K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AEMF có 

\(\widehat{FAE}=\widehat{AEM}=\widehat{AFM}=90^0\)

Do đó: AEMF là hình chữ nhật

mà đường chéo AM là tia phân giác của \(\widehat{EAF}\)

nên AEMF là hình vuông

a: Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{EAF}=90^0\)

=>AEMF là hình chữ nhật

b:

Ta có: MF\(\perp\)AD

DC\(\perp\)AD

Do đó: MF//DC

Ta có: AEMF là hình chữ nhật

=>\(\widehat{AEF}=\widehat{AMF}\)

mà \(\widehat{AMF}=\widehat{ACD}\)(hai góc đồng vị, MF//CD)

nên \(\widehat{AEF}=\widehat{ACD}\)

Ta có: ABCD là hình chữ nhật

=>AC cắt BD tại trung điểm của mỗi đường và AC=BD

=>O là trung điểm chung của AC và BD và AC=BD

=>OA=OB=OC=OD

Xét ΔACD vuông tại D và ΔCAB vuông tại B có

CA chung

AD=CB

Do đó: ΔACD=ΔCAB

=>\(\widehat{ACD}=\widehat{CAB}\)

mà \(\widehat{CAB}=\widehat{OAB}=\widehat{OBA}\)(ΔOAB cân tại O)

nên \(\widehat{ACD}=\widehat{ABD}\)

=>\(\widehat{AEF}=\widehat{ABD}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên EF//BD