K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

2 tháng 10 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{4}{2a+b+c}=\frac{4}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{1}{a+c}\)

\(\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)\)

Tương tự cho 2 BĐT còn lại cũng có:

\(\frac{4}{2b+c+a}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\)\(;\frac{4}{2c+a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{c}\right)+\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{4}\left(4a+4b+4c\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=VP\)

Khi \(a=b=c\)

11 tháng 1 2015

cái này bạn dùng bất đẳng thức \(\frac{a^2}{x}+\frac{b^2}{y}>=\frac{\left(a+b\right)^2}{x+y}\)2 lần với từng phân thức. rồi cộng vế theo vế là xong

 

16 tháng 6 2016

bạn sử dụng BĐT tam giác :

a  <  b + c => a2 < b2 + c2

b < a + c => b2 < a2 + c2

c < a + b => c2 < a2 + b2

bạn tự làm nhé vì mik làm bạn cũng ko chọn mik

16 tháng 6 2016

Ta có:A = a+ b+ c- 2a2b- 2b2c- 2a2c= (a2)+ (b2)+ (c2)+ 2a2b- 2b2c- 2a2c+

4a2b= (a2+b2-c2)2-4a2b2

=(a2+b2-c2-2ab)(a2+b2-c2+2ab) (1)

Vì a;b;c là 3 cạnh của tam giác nên c>|a-b| =>c2>(|a-b|)2=(a-b)2

=>c2>a2+b2-2ab =>a2+b2-c2-2ab<0 (2)

lại có a+b>c =>(a+b)2>c2 =>a2+b2-c2 +2ab > 0 (3)

Từ (1)(2)(3) =>A<0 (Đpcm)

22 tháng 5 2016

dùng BĐT Cachy-S

22 tháng 5 2016

mình không hiểu lắm. Bạn giải rõ ra được không?

17 tháng 1 2016

bấm vào chữ 0 đúng sẽ ra đáp án 

olm-logo.png