Cho tam giác ABC vuông tại A có AB= 6cm, BC= 10cm. Các đường phân giác trong và ngoài của góc B cắt AC tại M và N. Tính BM và BN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì BM là đường phân giác của góc B nên ta có :
\(\frac{MA}{MC}=\frac{AB}{BC}\Rightarrow\frac{MA}{MA+MC}=\frac{AB}{AB+AC}\)
\(\Rightarrow MA=\frac{AB.\left(MA+MC\right)}{AB+BC}=\frac{6.8}{6+10}=\frac{48}{16}=3\left(cm\right)\)
Vì BN là đường phân giác của góc ngoài đỉnh B nên ta có: \(BM\perp BN\)
Suy ra tam giác BMN vuông tại B
Theo hệ thức liên hệ giữa đường cao và hình chiếu hai cạnh góc vuông, ta có: AB2 = AM . AN
Suy ra: \(AN=\frac{AB^2}{AM}=\frac{6^2}{3}=\frac{36}{3}=12\left(cm\right)\)
Tính được mỗi AM , AN nên thông cảm 😅
a)
Xét tam giác BAC vuông tại A và tam giác BMN vuông tại M có:
\(\widehat{BAC}\)=\(\widehat{BMN}\)
=> Tam giác BAC ᔕ Tam giác BMN (g-g)
=> BA/BM=BC/BN
=> BN=BM.\(\dfrac{BC}{BA}\)=18.\(\dfrac{20}{12}\)=30cm
b)
Xét tam giác PAN vuông tại A và tam giác PMC vuông tại M có
\(\widehat{APN}\)=\(\widehat{MPC}\) (đối đỉnh)
=> Tam giác PAN ᔕ Tam giác PMC (g-g)
=> \(\dfrac{PA}{PM}\)=\(\dfrac{PN}{PC}\)
=> PA.PC=PM.PN (đpcm)
Vì BM là đường phân giác của góc B nên ta có:
Vì BN là đường phân giác của góc ngoài đỉnh B nên ta có: BM ⊥ BN
Suy ra tam giác BMN vuông tại B
Theo hệ thức liên hệ giữa đường cao và hình chiếu hai cạnh góc vuông, ta có: A B 2 = AM.AN
Suy ra: AN = = 12 (cm)
Áp dụng định lý Pitago cho ABH vuông tại A có:
Vì BM là tia phân giác trong của góc B ⇒ M A M C = A B B C (Tính chất đường phân giác)
⇒ M A M C + M A = A B B C + A B ⇒ M A A C = A B B C + A B ⇒ M A 8 = 6 10 + 6 ⇒ MA = 3cm
Vì BM; BN là tia phân giác trong và ngoài của góc B ⇒ N B M ^ = 90 0
Áp dụng hệ thức lượng trong ABM vuông tại B có đường cao BA ta có:
Đáp án cần chọn là: D