1. Đưa thưà số ra ngoài dấu căn
\(\sqrt{27^{ }a^2}\)
2.Đưa thừa số vào tong dấu căn
\(\dfrac{2}{3}\sqrt{3xy}\)
3.Rút gọn
\(\sqrt{16b}\) + 2\(\sqrt{40b}\) - 3\(\sqrt{90b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(a^2\cdot\sqrt{\dfrac{2}{3a}}=a^2\cdot\dfrac{\sqrt{2}}{\sqrt{3}\cdot\sqrt{a}}=\dfrac{a\sqrt{2}}{\sqrt{3}}=\dfrac{a\sqrt{6}}{3}\)
b: \(\dfrac{x-3}{x}\cdot\sqrt{\dfrac{x^3}{9-x^2}}\)
\(=\dfrac{x-3}{x}\cdot\dfrac{x\sqrt{x}}{\sqrt{x-3}\cdot\sqrt{x+3}}\)
\(=\dfrac{\sqrt{x}\cdot\sqrt{x-3}}{\sqrt{x+3}}\)
\(\sqrt{18b^3\cdot\left(1-2a\right)^2}\)
\(=3\sqrt{2}\cdot b\sqrt{b}\cdot\left|1-2a\right|\)
\(=3\sqrt{2}\left(2a-1\right)\cdot b\sqrt{b}\)
a, Để A nhận giá trị dương thì \(A>0\)hay \(x-1>0\Leftrightarrow x>1\)
b, \(B=2\sqrt{2^2.5}-3\sqrt{3^2.5}+4\sqrt{4^2.5}\)
\(=4\sqrt{5}-9\sqrt{5}+16\sqrt{5}=\left(4-9+16\right)\sqrt{5}=11\sqrt{5}\)
( theo công thức \(A\sqrt{B}=\sqrt{A^2B}\))
c, Với \(a\ge0;a\ne1\)
\(C=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)
\(=\left(\sqrt{a}+1\right)^2.\frac{1}{\left(\sqrt{a}+1\right)^2}=1\)
Bài 1: Đưa thừa số ra ngoài dấu căn:
\(2\sqrt{225a^2}=2.15a=30a\)
Bài 2: Đưa thừa số vào trong dấu căn :
\(x\sqrt{\dfrac{-39}{x}}=\sqrt{x^2.\dfrac{-39}{x}}=\sqrt{-39x}\)
Bài 3: Sắp xếp theo thứ tự tăng dần :
a) \(2\sqrt{3}< 3\sqrt{2}< 2\sqrt{5}< 5\sqrt{2}\)
b) \(4\sqrt{2}< \sqrt{37}< 2\sqrt{15}< 3\sqrt{7}\)
c) \(6\sqrt{\dfrac{1}{3}}< \sqrt{27}< 2\sqrt{28}< 5\sqrt{7}\)
\(\sqrt{48\cdot45}=12\sqrt{15}\\ \sqrt{225\cdot17}=15\sqrt{17}\\ \sqrt{a^3b^7}=\left|ab^3\right|\sqrt{ab}=ab^3\sqrt{ab}\\ \sqrt{x^5\left(x-3\right)^2}=\left|x^2\left(x-3\right)\right|\sqrt{x}=x^2\left(x-3\right)\sqrt{x}\)
\(\sqrt{48\cdot45}=4\sqrt{3}\cdot3\sqrt{5}=12\sqrt{15}\)
\(\sqrt{225\cdot17}=15\sqrt{17}\)
a) \(\sqrt{27x^2}\)
\(=\sqrt{3^2\cdot3x^2}\)
\(=\left|3x\right|\sqrt{3}\)
\(=3\left|x\right|\sqrt{3}\)
b) \(\sqrt{8xy^2}\)
\(=\sqrt{2^2\cdot2\cdot x\cdot y^2}\)
\(=\left|2y\right|\sqrt{2x}\)
\(=2\left|y\right|\sqrt{2x}\)
c) \(\sqrt{25x^3}\)
\(=\sqrt{5^2\cdot x^2\cdot x}\)
\(=\left|5x\right|\sqrt{x}\)
\(=5\left|x\right|\sqrt{x}\)
d) \(\sqrt{48xy^4}\)
\(=\sqrt{4^2\cdot3x\cdot\left(y^2\right)^2}\)
\(=\left|4y^2\right|\sqrt{3x}\)
\(=4y^2\sqrt{3x}\)
`a, sqrt(27x^2b) = sqrt(3^2. 3.x^2b) = 3|x|sqrt(3b)`.
`b, sqrt(8xy^2) =sqrt(2^2.2xy^2)= 2|y|sqrt(2x)`
`c, sqrt(25x^3d) = sqrt(5^2.x^2.x.d) = 5|x|sqrt(xd)`.
`d, sqrt(48xy^4) = sqrt(4^2.3 . xy^4) = 4y^2sqrt(3x)`.
a) \(\sqrt{27x^2}=\sqrt{3.\left(3x\right)^2}=\left|3x\right|.\sqrt{3}=3x\sqrt{3}\left(x>0\right)\)
b) \(\sqrt{8xy^2}=\left|y\right|.2\sqrt{2x}=-2y\sqrt{2x}\left(x\ge0,y\le0\right)\)
1) \(x\sqrt{13}=\sqrt{13x^2}\left(x\ge0\right)\)
2) \(x\sqrt{-15x}=-\left|x\right|\sqrt{15x}=-\sqrt{15x^3}\left(x< 0\right)\)
3) \(x\sqrt{2}=-\left|x\right|\sqrt{2}=-\sqrt{2x^2}\left(x\le0\right)\)
Bài 1:
\(\sqrt{27a^2}=3a\sqrt{3}\)
Bài 2:
\(\dfrac{2}{3}\sqrt{3xy}=\sqrt{3xy\cdot\dfrac{4}{9}}=\sqrt{\dfrac{4}{3}xy}\)
Bài 3:
\(=4\sqrt{b}+2\cdot2\sqrt{10b}-3\cdot3\sqrt{10b}=4\sqrt{b}-5\sqrt{10b}\)