Tìm số dư trong mỗi phép chia sau:
a) 43624362 cho 11 b) 301293 cho 13
c) 19991999 cho 99 d) 20012010 cho 2003
e) 35150 cho 425 f) 31000 cho 49
(Giải Toán Casio) (đồng dư thức)
Giúp mk vs! mai mk nộp rùi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(2^{2024}=2^2.2^{2022}=4.\left(2^3\right)^{674}=4.8^{674}\)
Do \(8\equiv1\left(mod7\right)\Rightarrow8^{674}\equiv1\left(mod7\right)\)
\(\Rightarrow4.8^{674}\equiv4\left(mod7\right)\)
Hay \(2^{2024}\) chia 7 dư 4
b.
\(5^{70}+7^{50}=\left(5^2\right)^{35}+\left(7^2\right)^{25}=25^{35}+49^{25}\)
Do \(\left\{{}\begin{matrix}25\equiv1\left(mod12\right)\\49\equiv1\left(mod12\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}25^{35}\equiv1\left(mod12\right)\\49^{25}\equiv1\left(mod12\right)\end{matrix}\right.\)
\(\Rightarrow25^{35}+49^{25}\equiv2\left(mod12\right)\)
Hay \(5^{70}+7^{50}\) chia 12 dư 2
c.
\(3^{2005}+4^{2005}=\left(3^5\right)^{401}+\left(4^5\right)^{401}=243^{401}+1024^{401}\)
Do \(\left\{{}\begin{matrix}243\equiv1\left(mod11\right)\\1024\equiv1\left(mod11\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}243^{401}\equiv1\left(mod11\right)\\1024^{401}\equiv1\left(mod11\right)\end{matrix}\right.\)
\(\Rightarrow243^{401}+1024^{401}\equiv2\left(mod11\right)\)
Hay \(3^{2005}+4^{2005}\) chia 11 dư 2
d.
\(1044\equiv1\left(mod7\right)\Rightarrow1044^{205}\equiv1\left(mod7\right)\)
Hay \(1044^{205}\) chia 7 dư 1
e.
\(3^{2003}=3^2.3^{2001}=9.\left(3^3\right)^{667}=9.27^{667}\)
Do \(27\equiv1\left(mod13\right)\Rightarrow27^{667}\equiv1\left(mod13\right)\)
\(\Rightarrow9.27^{667}\equiv9\left(mod13\right)\)
hay \(3^{2003}\) chia 13 dư 9
Giải trên máy Casio fx-570MS ( Casio fx-570 tương tự)
Nhắc lại: Đa thức P(x) chia hết cho ax + b khi và chỉ khi P(-ba)=0
Dư của phép chia đa thức P(x) cho ax + b là P(-ba)
Quy trình bấm phím như sau:
1. Ghi vào màn hình: 6A3 -7A2 -16A
Thay x = 13 vào biểu thức, ta có:
\(P\left(13\right)=1+13+13^2+...+13^{100}\)
\(13P\left(13\right)=13+13^2+13^3+...+13^{101}\)
\(\Rightarrow13P\left(13\right)-P\left(13\right)=\left(13+13^2+13^3+...+13^{101}\right)-\left(1+13+13^2+...+13^{100}\right)\)
\(\Rightarrow12P\left(13\right)=13^{101}-1\)
\(\Rightarrow P\left(13\right)=\dfrac{13^{101}-1}{12}\)
Ta có: 51.12 = 612
Vì 13101 đồng dư với 421 ( mod 612 )
\(\Rightarrow13^{101}=612.k+421\) ( \(k\in Z\) )
\(\Rightarrow P\left(13\right)=\dfrac{612k+421-1}{12}\)
\(\Rightarrow P\left(13\right)=\dfrac{612k+420}{12}\)
\(\Rightarrow P\left(13\right)=51k+35\)
Vậy P(13) chia cho 51 dư 35.
Mình vẫn chưa hiểu phần 51.12 = 612. Bạn giải thích đi
a) Ta có :
\(7^{8^9}=7^{2^{27}}=7^{4^{13}}.7\)
\(7^4=2401\text{≡}1\left(mod15\right)\)
\(\Rightarrow7^{4^{13}}.7\text{≡}1^{13}.7\left(mod15\right)\)
\(\Leftrightarrow7^{8^9}\text{≡}1.7\text{≡}7\left(mod15\right)\)
Vậy ...
b) Để tớ hỏi cô tớ chút nhé :(
-Dung:để t xem lại cách làm của c câu a) đã,cô t bảo bài đó dài,phải xét tới 9 lần 78 đồng dư với ..(mod15) cơ