Tìm số a nhỏ nhất có 10 chữ số biết rằng số đó khi chia cho 5 dư 3 và khi chia cho 619 dư 237
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Lời giải:
Gọi số tự nhiên cần tìm là $a$. Theo bài ra thì:
$a$ chia $13$ dư $8$ nên $a=13k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 5 nên:
$a-5\vdots 11$
$\Rightarrow 13k+3\vdots 11$
$\Rightarrow 13k+3-11.5\vdots 11$
$\Rightarrow 13k-52\vdots 11$
$\Rightarrow 13(k-4)\vdots 11$
$\Rightarrow k-4\vdots 11$
$\Rightarrow k=11m+4$ với $m$ tự nhiên.
$a=13k+8=13(11m+4)+8=143m+60$
Để $a$ là số tự nhiên nhỏ nhất có 3 chữ số thì $m$ cũng phải là stn nhỏ nhất thỏa mãn $143m+60$ có 3 c/s.
$\Rightarrow 143m+60\geq 100\Rightarrow m\geq 0,27$
Mà $m\in\mathbb{N}$ nên $m$ nhỏ nhất bằng 1.
$\Rightarrow a=143+60=203$
Gọi số tự nhiên cần tìm là a(Điều kiện: \(99< a< 1000;a\in N\))
Vì a chia 2 dư 1 nên a+1 chia hết cho 2
Vì a chia 3 dư 2 nên a+1 chia hết cho 3
Vì a chia 4 dư 3 nên a+1 chia hết cho 4
Do đó: \(a+1\in BC\left(2;3;4\right)\)
\(\Leftrightarrow a+1\in\left\{12;24;36;...;96;108;120;...\right\}\)
mà a+1 là số tự nhiên nhỏ nhất có 3 chữ số
nên a+1=108
hay a=107
Vậy: Số tự nhiên cần tìm là 107
Gọi số tự nhiên cần tìm là a(Điều kiện: 99<a<1000;a∈N99<a<1000;a∈N)
Vì a chia 2 dư 1 nên a+1 chia hết cho 2
Vì a chia 3 dư 2 nên a+1 chia hết cho 3
Vì a chia 4 dư 3 nên a+1 chia hết cho 4
Do đó: a+1∈BC(2;3;4)a+1∈BC(2;3;4)
⇔a+1∈{12;24;36;...;96;108;120;...}⇔a+1∈{12;24;36;...;96;108;120;...}
mà a+1 là số tự nhiên nhỏ nhất có 3 chữ số
nên a+1=108
hay a=107
Vậy: Số tự nhiên cần tìm là 107