K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

a)Ta có : CA vuông góc AB(gt) và HP vuông góc AB(gt) => CA //HP => góc PHA=góc HAQ(so le trong).

Xét tam giác vuông AHP và tam giác vuông HAQ có:

Cạnh HA chung

góc PHA=góc HAQ(cmt)

Do đó: tam giác AHP=tam giác HAQ(cạnh huyền-góc nhọc).

=> HP=AQ(hai cạnh tương ứng) và AP=HQ(hai cạnh tương ứng).

Ta có : PH=PD(gt) và PH=AQ(cmt) nên PD=AQ

           QH=QE(gt) và HQ=AP(cmt) nên QE=AP

Xét hai tam giác vuông DPA và tam giác vuông AQE có:

           PD=AQ(cmt)

           QE=AP(cmt)

Do đó:tam giác DPA=tam giác AQE(hai cạnh góc vuông)

=>AD=AE(hai cạnh tương ứng)

hay A là trung điểm của DE>

b)Trong tam giác HDE có : P là trung điểm DH và Q là trung điểm HE => PQ là đường trung bình => PQ=1/2DE.

c)Tam giác HDE có PQ là đường trung bình => PQ=1/2DE=DA (1).

Trong tam giác ADH có AP là trung tuyến(PD=PH) đồng thời AP là đường cao=>Tam giác ADH cân=>AD=AH (2).

Từ (1) và (2), suy ra PQ=AH.

Hok tốt nhaaaa ~

15 tháng 9 2018

a)Ta có : CA vuông góc AB(gt) và HP vuông góc AB(gt) => CA //HP => góc PHA=góc HAQ(so le trong).

Xét tam giác vuông AHP và tam giác vuông HAQ có:

Cạnh HA chung

góc PHA=góc HAQ(cmt)

Do đó: tam giác AHP=tam giác HAQ(cạnh huyền-góc nhọc).

=> HP=AQ(hai cạnh tương ứng) và AP=HQ(hai cạnh tương ứng).

Ta có : PH=PD(gt) và PH=AQ(cmt) nên PD=AQ

           QH=QE(gt) và HQ=AP(cmt) nên QE=AP

Xét hai tam giác vuông DPA và tam giác vuông AQE có:

           PD=AQ(cmt)

           QE=AP(cmt)

Do đó:tam giác DPA=tam giác AQE(hai cạnh góc vuông)

=>AD=AE(hai cạnh tương ứng)

hay A là trung điểm của DE>

b)Trong tam giác HDE có : P là trung điểm DH và Q là trung điểm HE => PQ là đường trung bình => PQ=1/2DE.

c)Tam giác HDE có PQ là đường trung bình => PQ=1/2DE=DA (1).

Trong tam giác ADH có AP là trung tuyến(PD=PH) đồng thời AP là đường cao=>Tam giác ADH cân=>AD=AH (2).

Từ (1) và (2), suy ra PQ=AH.

a: góc APH=góc AQH=góc PAQ=90 độ

=>APHQ là hình chữ nhật

=>PQ=AH

b: Xét ΔHED có HQ/HE=HP/HD

nên QP//ED và QP/ED=HQ/HE=1/21

=>PQ=1/2ED

a: Xét ΔAHD có

AP là đường cao, là đường trung tuyến

nên ΔAHD cân tại A

mà AP là đường cao

nên AP là phân giác của góc HAD(1)

Xét ΔAHE có

AQ là đường cao, là đường trung tuyến

nên ΔAHE cân tại A

mà AQ là đường cao

nên AQ là phân giác của góc HAE(2)

Từ (1) và (2) suy ra góc DAE=2x90=180 độ

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

b: Xét ΔHED có Q,P lần lượt là trung điểm của HE,HD

nên ΔHED cân tại H

=>QP=1/2ED

c: Xét tứ giác APHQ có góc APH=góc AQH=góc PAQ=90 độ

nên APHQ là hình chữ nhật

=>AH=PQ

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

3 tháng 10 2019