K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

Vì AD=AB (gt). Mà AD=7cm => AB=7cm

Áp dụng định lí Py-Ta-Go, Ta có:

BC2=AB2+AC2

252=72+AC2

625=49+AC2

=> AC2=625-49=576

=>AC=24

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:A.  Tam giác cân                               B. Tam giác đều      C.   Tam giác vuông                          D. Tam giác vuông cânCâu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:A. 7cm                     B. 12,5cm                     C....
Đọc tiếp

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:

A.  Tam giác cân                               B. Tam giác đều      

C.   Tam giác vuông                          D. Tam giác vuông cân

Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:

A. 7cm                     B. 12,5cm                     C. 5cm                  D.

Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: 

A. Đỉnh A             B. Đỉnh B             C. Đỉnh C                       D. Tất cả đều sai

Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?

A.  ABM  = ACM                                   B. ABM= AMC

C.  AMB= AMC= 900                             D. AM là tia phân giác CBA

Câu  21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:

          A. cm            B. 3cm                  C. cm             D. cm

Câu 22: Cho ABC= DEF. Khi đó:                             .

 A. BC = DF                                     B. AC = DF

   C. AB = DF                                   D. góc A = góc E    

Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:

A.   PQ =5cm           B. QR= 5cm            C. PR= 5cm              D.FE= 5cm                           

Câu 24. Cho tam giác MNP cân tại M, . Khi đó,

A.          B.             C.               D.

Câu 25 : Cho ABC= MNP  biết   thì:

A. MNP vuông  tại P                                                  B. MNP vuông  tại M          

C. MNP vuông  tại N                                                  D. ABC vuông tại A

1
15 tháng 3 2022

Câu 17: Cho ABC có  AB = AC và  = 2   có dạng đặc biệt nào:

A.  Tam giác cân                               B. Tam giác đều      

C.   Tam giác vuông                          D. Tam giác vuông cân

Câu 18Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:

A. 7cm                     B. 12,5cm                     C. 5cm                  D.

Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: 

A. Đỉnh A             B. Đỉnh B             C. Đỉnh C                       D. Tất cả đều sai

Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?

A.  ABM  = ACM                                   B. ABM= AMC

C.  AMB= AMC= 900                             D. AM là tia phân giác CBA

Câu 22Cho ABC= DEF. Khi đó:                             .

 A. BC = DF                                     B. AC = DF

   C. AB = DF                                   D. góc A = góc E    

Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:

A.   PQ =5cm           B. QR= 5cm            C. PR= 5cm              D.FE= 5cm                           

21 tháng 3 2022

C

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

a: Xét ΔABC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

Xét ΔABD vuông tại D và ΔCAD vuông tại  D có

góc DBA=góc DAC

=>ΔABD đồng dạng với ΔCAD

b: góc EAF+góc EDF=180 độ

=>AFDE nội tiếp

=>góc AFD+góc AED=180 độ

=>góc AFD=góc CED

1 tháng 10 2023

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

1 tháng 10 2023

 

 

17 tháng 8 2017

xét 2 tam giác vuông ABC và tam giác EDF, ta có: 

cạnh góc vuông : AB = DE

góc nhọn : ABC = DEF 

=> tam giác ABC = tam giác DEF ( cgv - gn )

Lý thuyết : Cạnh góc vuông - góc nhọn: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác đó bằng nhau (cgv-gn)

22 tháng 2 2020

xét 2 tam giác vuông ABC và tam giác EDF, ta có: 
cạnh góc vuông : AB = DE
góc nhọn : ABC = DEF 
=> tam giác ABC = tam giác DEF ( cgv - gn )
Lý thuyết : Cạnh góc vuông - góc nhọn: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông
và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác đó bằng nhau (cgv-gn)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi