Cho tứ giác ABCD, \(AB=AD=BC,\) \(\widehat{A}+\widehat{C}=180^O\), CMR
a) DB là p.g \(\widehat{ADC}\)
b) Chứng minh ABCD là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: AD = AB
=> \(\Delta ABD\) là tam giác cân
=> Góc ADB = góc ABD (1)
Mà góc ABD = góc BDC (so le trong) (2)
Từ (1) và (2), suy ra:
BD là tia phân giác của góc ADC
b. Nối AC
Xét 2 tam giác ABC và ABD có:
AD = BC (gt)
AB chung
=> \(\Delta ABD\sim\Delta ABC\) (1)
Ta có: AD = AB = BC (2)
Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)
=> Góc A = góc B
Ta có: AB//CD
=> Góc D + góc A = 90o (2 góc trong cùng phía)
Mà góc A = góc B
=> Góc C = góc D
=> ABCD là hình thang cân
cho tứ giác abcd có ad=ab=bc và gốc Á+góc C=180.CMR a)tia DB là tia phân giác của góc ADC.b) Tứ giác ABCD là hình thang cân
a, Xet tu giac ABCD co \(\widehat{BAC}+\widehat{BCD}=180° \)→Tu giac ABCD la tu giac noi tiep\(→\hept{\begin{cases}\widehat{CAB}=\widehat{BDC}\\\widehat{ADB}=\widehat{ACB}\end{cases}}\)
Mat khac do AB=BC nen tam giac ABC can suy ra \(\widehat{CAB}=\widehat{ACB}\)
Tu day ta co \(\widehat{BCD}=\widehat{ADB}\)hay DB la phan giac cua \(\widehat{ADC}\)
a) Xét ΔBAD và ΔABC có
AB chung
\(\widehat{BAD}=\widehat{ABC}\)(gt)
AD=BC(gt)
Do đó: ΔBAD=ΔABC(c-g-c)
Suy ra: BD=AC(hai cạnh tương ứng)
Xét ΔADC và ΔBCD có
AD=BC(gt)
AC=BD(cmt)
DC chung
Do đó: ΔADC=ΔBCD(c-c-c)
Suy ra: \(\widehat{ADC}=\widehat{BCD}\)(hai góc tương ứng)
Xét tứ giác ABCD có
\(\widehat{BAD}+\widehat{ABC}+\widehat{BCD}+\widehat{ADC}=360^0\)(Định lí tổng bốn góc trong một tứ giác)
\(\Leftrightarrow2\cdot\widehat{BAD}+2\cdot\widehat{ADC}=360^0\)
\(\Leftrightarrow\widehat{BAD}+\widehat{ADC}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
Xét tứ giác ABCD có AB//CD(cmt)
nên ABCD là hình thang(Định nghĩa hình thang)
Hình thang ABCD(AB//CD) có AC=BD(cmt)
nên ABCD là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Hình:
Giải:
a) Theo giả thiết, ta có:
\(AD=AB=BC\) và \(\widehat{A}+\widehat{C}=180^0\)
Suy ra tứ giác ABCD là hình vuông
Mà DB là đường chéo của tứ giác ABCD
=> DB là tia phân giác của góc ADC
b) Vì ABCD là hình vuông
\(\Rightarrow\left\{{}\begin{matrix}AD=BC\left(gt\right)\\AB//DC\end{matrix}\right.\)
=> ABCD là hình thang cân
Vậy ...