cho tam giác abc , điểm D thuộc cạnh AC sao cho AD=1/2DC. Gọi M là trung điểm của BC , I là giao điểm của BD và AM . Chứng minh rằng AI=IM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi E là trung điểm của DC
Trong ΔBDC, ta có:
M là trung điểm của BC (gt)
E là trung điểm của CD (gt)
Nên ME là đường trung bình của ∆ BCD
⇒ME // BD (tính chất đường trung bình tam giác)
Suy ra: DI // ME
AD = 1/2 DC (gt)
DE = 1/2 DC (cách vẽ)
⇒ AD = DE và DI//ME
Nên AI= IM (tính chất đường trung bình của tam giác).
Gọi E là trung điểm của DC
Trong ΔBDC, ta có:
M là trung điểm của BC (gt)
E là trung điểm của CD (gt)
Nên ME là đường trung bình của ∆ BCD
⇒ME // BD (tính chất đường trung bình tam giác)
Suy ra: DI // ME
AD = 1/2 DC (gt)
DE = 1/2 DC (cách vẽ)
⇒ AD = DE và DI//ME
Nên AI= IM (tính chất đường trung bình của tam giác).
Gọi K là trung điểm của DC
Suy ra: AD=DK=KC
Xét ΔBDC có
M là trung điểm của BC
K là trung điểm của DC
Do đó: MK là đường trung bình của ΔBDC
Suy ra: MK//BD và \(MK=\dfrac{BD}{2}\)
hay ID//MK
Xét ΔAMK có
D là trung điểm của AK
DI//MK
Do đó: I là trung điểm của AM
hay IA=IM
Hình bạn tự vẽ nhé
Giải: Kẻ \(MG//BD\) ta có: \(\hept{\begin{cases}MG//BD\\MB=MC\left(gt\right)\end{cases}}\Rightarrow\) MG là đường trung bình tam giác BCD.
\(\Rightarrow DG=CG=\frac{1}{2}CD\Rightarrow DG=AD\)
Xét tam giác AMG ta có: \(\hept{\begin{cases}MG//DI\\AD=DG\end{cases}}\Rightarrow AI=IM\left(đpcm\right)\) (tc đường tb tam giác)
Lấy N là trung điểm của DC ; ta có \(AD=DN=NC\)
Xét tam giác BCD có MN là đường trung bình \(\Rightarrow MN\text{//}BD\) hay \(MN\text{//}ID\)
Xét tam giác AMN có D là trung điểm của AN; ID//MN (cmt) => I là trung điểm của AM
=> ĐPCM
Ta gọi E là trung điểm của DC
Vì tam giác ABC có
BM = MC
DE = EC
=> BD // ME
=> DI // ME
mà tâm giac ADE có AD = DE và DI // ME nên AI = IM (đpcm)
a)Giả thiết: AD= 1/2DC, lại có DE=EC (E trung điểm DC) nên AD=DE=EC;Xét tam giác BDC có:
M trung điểm BC (gt)
E trung điểm DC (gt)
Suy ra: EM là đường trung bình tam giác BDC
=>ME // BD hay ME // ID (I thuộc BD)
Xét tam giác AME có:
D trung điểm AE (cmt DA=DE);
ME // ID (cmt)
Suy ra: I là trung điểm AM => IA=IM (dpcm)
b)Xét tam giác BDC có
M là trung điểm của BC(gt);
N là trung điểm AD(gt)
Suy ra NM là đường trung bình tam giác BDC nên NM//DC hay MN//AE
=>MNAE là hình thang
Giải:
Gọi E là trung điểm của DC
Trong ∆ BDC ta có:
M là trung điểm của BC (gt)
E là trung điểm của CD (gt)
Nên ME là đường trung bình của ∆ BCD
⇒ ME // BD( tính chất đường trung bình của tam giác)
Suy ra: DI // ME
AD=\(\dfrac{1}{2}\)DC (gt)
DE=\(\dfrac{1}{2}\)DC (theo cách vẽ)
⇒AD = DE
DI // ME
Nên AI = IM (tính chất đường trung bình của tam giác)