Nen.CMR:6n+5 và 4n+3 là hai số nguyên tố cùng nhau
Các bạn giúp mình với mình cảm ơn rất nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt ƯCLN(6n+5;4n+3)=d => 6n+5 chia hết cho d; 4n+3 chia hết cho d
=>2(6n+5) chia hết cho d; 3(4n+3) chia hết cho d
=>12n+10 chia hết cho d; 12n+9 chia hết cho d
=>(12n+10)-(12n+9) chia hết cho d
=>1 chia hết cho d
=>d=1
=>đpcm
Gọi d thuộc Ư(6n+5,4n+3)
=>6n+5 chia hết cho d ; 4n+3 chia hết cho d
=>2(6n+5) chia hết cho d ; 3(4n+3) chia hết cho d
=>(12n+10)-(12n+9) chia hết cho d
=> 1 chia hết cho d
=>d=1
Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau
Ừ thì do n+1 và n+2 là 2 stn liên tiếp nên chúng luôn phải nguyên tố cùng nhau hoi
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
Gọi \(d=ƯCLN\left(6n+5;4n+3\right)\left(d\in N\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+5⋮d\\4n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12n+10⋮d\\12n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(6n+5;4n+3\right)=1\)
\(\Leftrightarrowđpcm\)
Gọi d = ƯCLN ( 6n + 5 , 4n + 3 ) ( d \(\in\)N )
\(\Rightarrow\)=> 6n + 5 chia hết cho d
4n + 3 chia hết cho d
=> 12n + 10 chia hết cho d
12n + 9 chia hết cho d
=> 1 chia hết cho d
Vì d thuộc N ; 1 chia hết cho d <=> d = 1
=> ƯCLN ( 6n + 5 , 4n + 3 ) = 1
=> ( đpcm )