Cho f(x) = 1 + x + \(x^2\) + ... + \(x^{2015}\) . Tính f(a)
với a = \(\sqrt[3]{5+\sqrt{52}}\) + \(\sqrt[3]{5-\sqrt{52}}\).
Giúp mình nha^^ gấp lắm, huhu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) \(a^3=\left(\sqrt[3]{5+\sqrt{52}}+\sqrt[3]{5-\sqrt{52}}\right)^3\)
\(=5+\sqrt{52}+5-\sqrt{52}+3.\sqrt[3]{\left(5+\sqrt{52}\right)\left(5-\sqrt{52}\right)}.a\)
\(=10+3.\sqrt[3]{-27}.a\)
\(a^3+9a-10=0\Leftrightarrow\left(a-1\right)\left(a^2+10\right)=0\Rightarrow a=1\)
=> \(f\left(1\right)=1+1+1+1+........+1=2016\)
\(x=\frac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\)
<=> \(x^3=\frac{1}{4-\sqrt{15}}+3\left(\frac{1}{\sqrt[3]{4-\sqrt{15}}}+\sqrt[3]{4-\sqrt{15}}\right)\left(\frac{1}{\sqrt[3]{4-\sqrt{15}}}.\sqrt[3]{4-\sqrt{15}}\right)\)
\(+4-\sqrt{15}\)
<=> \(x^3=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}+3x\)
<=> \(x^3-3x+2006=\frac{1}{4-\sqrt{15}}+4-\sqrt{15}+2006\)
<=> \(x^3-3x+2006=\frac{4+\sqrt{15}}{16-15}+4-\sqrt{15}+2006\)
<=> \(x^3-3x+2006=2014\)
TA CÓ:
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1+6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)
\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=5\Leftrightarrow2\sqrt{x-1}=10\Leftrightarrow\sqrt{x-1}=5\)
\(\Leftrightarrow x-1=25\Leftrightarrow x=26\)
ĐKXĐ: \(x\ge1\)
PT (=) \(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}+3\right)^2}=5\)
(=) \(\sqrt{x-1}-2+\sqrt{x-1}+3=5\) (=) \(2\sqrt{x-1}=4\)(=) \(\sqrt{x-1}=2\)(=) X = 5 (nhận)
a: Ta có: \(A=\dfrac{1}{\sqrt{x}+1}-\dfrac{x+2}{x\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}+1-x-2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\dfrac{-1}{x-\sqrt{x}+1}\)
\(A=\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}×\frac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{1}{\sqrt{x}+2}\)
A đạt GTLN khi \(2+\sqrt{x}\)đạt GTNN hay x là nhỏ nhất. Vậy A đạt GTLN là \(\frac{1}{2}\)khi x = 0
\(x=\frac{1}{2}\frac{\sqrt{\left(\sqrt{2}-1\right)^2}}{\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}}=\frac{1}{2}.\left(\sqrt{2}-1\right)\)
\(\Rightarrow2x=\sqrt{2}-1\Rightarrow2x+1=\sqrt{2}\)
\(\Rightarrow4x^2+4x+1=2\Rightarrow4x^2+4x-1=0\)
\(B=\left[x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+4x^2+4x-1-1\right]^{2018}+2018\)
\(=\left(-1\right)^{2018}+2018=2019\)
Đặt \(\sqrt{x}=t\ge0\)
\(P=\dfrac{4t}{3t^2-3t+3}\Rightarrow3Pt^2-\left(3P+4\right)t+3P=0\left(1\right)\)
Ta cần tìm P để (1) có ít nhất một nghiệm không âm
\(\Delta=\left(3P+4\right)^2-36P^2=\left(4-3P\right)\left(4+9P\right)\ge0\)
\(\Rightarrow\dfrac{-4}{9}\le P\le\dfrac{4}{3}\) (2)
Để (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}\dfrac{3P+4}{3P}< 0\\\dfrac{3P}{3P}>0\end{matrix}\right.\) \(\Rightarrow\dfrac{-4}{3}< P< 0\)
\(\Rightarrow\) để (1) có ít nhất 1 nghiệm không âm thì \(P\ge0\) hoặc \(P\le\dfrac{-4}{3}\) (3)
Kết hợp (2) với (3) ta được: \(0\le P\le\dfrac{4}{3}\)
Vậy \(P_{min}=0\) và \(P_{max}=\dfrac{4}{3}\)
Vậy dấu "=" xảy ra khi nào? Hình như Max đúng rồi còn Min mình chưa chắc...
Ta có : \(a^3=10+3\sqrt[3]{\left(5+\sqrt{52}\right)\left(5-\sqrt{52}\right)}\left(\sqrt[3]{5+\sqrt{52}}+\sqrt[3]{5-\sqrt{52}}\right)\)
\(=10+3\sqrt[3]{-27}.a=10-9a\)
\(\Rightarrow a^3+9a-10=0\Rightarrow\left(a-1\right)\left(a^2+a+10\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a^2+a+10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=1\\\left(a+\dfrac{1}{2}\right)^2+\dfrac{39}{4}>0\end{matrix}\right.\)
\(\Rightarrow a=1\) \(\Rightarrow f\left(a\right)=1+1+1^2+.....+1^{2015}=2016\)
cách thức tính a ? :) máy tính?