K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

\(2^{x+1}.2^{2017}=2^{2018}\)

\(\Leftrightarrow2^{x+1+2017}=2^{2018}\)

\(\Leftrightarrow2^{x+2018}=2^{2018}\)

\(\Leftrightarrow x+2018=2018\)

\(\Leftrightarrow x=0\)

Vậy .......

2 tháng 9 2019

=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2

=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)

Với x+2020=0=>x=-2020

Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí 

Vậy x=-2020

16 tháng 5 2018

Với x < 2017 

pt <=> (2017 - x) + 2018 - x + 2019 - x = 2

    <=> 6054 - 3x = 2

    <=> 3x = 6054 - 2 = 6052

    <=>  x = \(\frac{6052}{3}>2017\) (Loại)

Với \(2017\le x\le2018\)

pt <=> (x - 2017) + (2018 - x) + (2019 - x) = 2

    <=>  2020 - x = 2

    <=>  x = 2020 - 2 = 2018 (Nhận) 

Với \(2018< x\le2019\)

pt <=> (x - 2017) + (x - 2018) + (2019 - x) = 2 

    <=>  x - 2016 = 2

    <=>  x = 2018  (loại)

Với \(2019< x\)

pt <=> (x - 2017) + (x - 2018) + (x - 2019) = 2 

    <=> 3x - 6054 = 2

    <=>  3x = 6056

    <=> x = \(\frac{6056}{3}< 2019\) (Loại )

Vậy , phương trình chỉ có một nghiệm x = 2018 

|2017-x|+|2018-x|+|2019-x|=2

nên sẽ có ít nhất 1 giá trị bằng 0

1. |2017-x|=0

2017-x=0

x=2017

=>|2017-x|+|2018-x|+|2019-x|=3(không thỏa mãn)

2.|2018-x|=0

2018-x=0

x=2018

=>|2017-x|+|2018-x|+|2019-x|=2(thỏa mãn)

3.|2019-x|=0

2019-x=0

x=2019 =>|2017-x|+|2018-x|+|2019-x|=3(không thỏa mãn) Vậy x=2018 để thỏa mãn điều kiện|2017-x|+|2018-x|+|2019-x|=2

27 tháng 2 2020

꧁༺ⓂⓉⓅ_ⓀⒶⒾⓉⓄ༻꧂( ༺TEAM༻❺❾☆ⓇⓄⓎⒶⓁ )

chép mạng nhớ ghi nguồn nha 

https://h7.net/hoi-dap/toan-7/tim-x-biet-2017-x-2018-x-2019-x-2-faq358792.html

29 tháng 12 2020

\(\dfrac{x-1}{2019}+\dfrac{x-2}{2018}+\dfrac{x-3}{2017}=3\)

\(\Leftrightarrow\left(\dfrac{x-1}{2019}-1\right)+\left(\dfrac{x-2}{2018}-1\right)+\left(\dfrac{x-3}{2017}-1\right)=0\)

\(\Leftrightarrow\dfrac{x-1-2019}{2019}+\dfrac{x-2-2018}{2018}+\dfrac{x-3-2017}{2017}=0\)

\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}+\dfrac{x-2020}{2017}=0\)

\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\right)=0\)

Vi \(\dfrac{1}{2019}+\dfrac{1}{2018}+\dfrac{1}{2017}\ne0\)

nên \(x-2020=0\)

\(\Leftrightarrow x=2020\)

Vậy ...

29 tháng 12 2020

undefined