Tìm n E N ( khác 0 ) biết :
2 + 4 + 6 + ...............+ 2n = 210
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2 + 4 + 6 + … + 2n = 2 + 2 n n 2 = n(n+1)
Ta có n(n+1) = 210. Ta phân tích số 210 ra thừa số nguyên tố rồi ghép các thừa số lại để được tích của hai số tự nhiên liên tiếp.
210 = 2.3.5.7 = (2.7).(3.5) = 14.15
n(n+1) = 14.15
Vậy n = 14
b, 1 + 3 + 5 +…+ (2n – 1) = 1 + 2 n - 1 2 = n 2
Ta có: n 2 = 225 n 2 = 3 2 . 5 2 = 15 2
=> n = 15
Vậy n = 15
Vế trái có (2n-2):2+1=n-1+1=n số hạng
=> Vế trái = (2+2n).n:2=n(n+1)
=> n(n+1)=210=14.15
vì n va n+1 la 2 số tự nhiên liên tiếp nên suy ra n=14
a, 2+4+...+2n=210
=> 2(1+2+...+n)=210
=> \(\frac{2n\left(n+1\right)}{2}=210\)
=> n(n+1) = 210
Mà 14.15 = 210
=> n=14
b, 1+3+....+2n=225
=> \(\frac{\left[\left(2n+1\right)-1\right].n}{2}=225\)
=> \(\frac{2n.n}{2}=225\)
=> n2 = 225
=> \(n=\pm15\)
a) 2 + 4 + 6 + ... + 2n = 210
1.2 + 2.2 + 2.3 + ... + 2n = 210
2.(1+2+3+...+n) = 210
1 + 2 + 3 + ... + n = 105
\(\frac{n\left(n+1\right)}{2}\)= 105
n(n+1) = 210
n(n+1) = 14.15
=> n = 14
b) 1+3+5+...+(2n-1)=225
\(\frac{\left(2n-1+1\right).n}{2}\) =225
\(\frac{2n.n}{2}\) =225
\(\frac{2.n^2}{2}\) =225
\(n^2\) =225
Ta có: \(n^2\) =225 = \(3^2\).\(5^2\)= \(\left(15\right)^2\)
=> n = 15
2 + 4 + 6 + 8 + ... + 2n = 210
=> 2 . (1 + 2 + 3 + 4 + ... + n) = 210
=> 1 + 2 + 3 + 4 + ... + n = 210 : 2
=> 1 + 2 + 3 + 4 + ... + n = 105
=> n . (n + 1) : 2 = 105
=> n . (n + 1) = 105 . 2
=> n . (n + 1) = 210
Vì 14 . 15 = 210 => n = 14