Cho
\(A=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
Tìm điều kiện để A tồn tại
Tìm điều kiện để A là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{4;1\right\}\end{matrix}\right.\)
Ta có: \(A=\dfrac{x-4\sqrt{x}+3-\left(2x-4\sqrt{x}-\sqrt{x}+2\right)+x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2x-4\sqrt{x}+5-2x+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)
\(A=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-4\sqrt{x}+3-2x+5\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{1}{\sqrt{x}-2}\)
b: Để A>2 thì A-2>0
=>\(\dfrac{1-2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)
=>\(\dfrac{5-2\sqrt{x}}{\sqrt{x}-2}>0\)
=>\(\dfrac{2\sqrt{x}-5}{\sqrt{x}-2}< 0\)
TH1: \(\left\{{}\begin{matrix}2\sqrt{x}-5>0\\\sqrt{x}-2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}>\dfrac{5}{2}\\\sqrt{x}< 2\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}2\sqrt{x}-5< 0\\\sqrt{x}-2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}< \dfrac{5}{2}\\\sqrt{x}>2\end{matrix}\right.\)
=>\(2< \sqrt{x}< \dfrac{5}{2}\)
=>4<x<25/4
c: Để A là số nguyên thì \(1⋮\sqrt{x}-2\)
=>\(\sqrt{x}-2\in\left\{1;-1\right\}\)
=>\(\sqrt{x}\in\left\{3;1\right\}\)
=>\(x\in\left\{1;9\right\}\)
kết hợp ĐKXĐ, ta được: x=9
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
\(A=\frac{5\sqrt{x}+3x}{(\sqrt{x}-1)(\sqrt{x}+3)}-\frac{(3\sqrt{x}-1)(\sqrt{x}+3)}{(\sqrt{x}-1)(\sqrt{x}+3)}+\frac{7(\sqrt{x}-1)}{(\sqrt{x}+3)(\sqrt{x}-1)}\)
\(=\frac{5\sqrt{x}+3x-(3x+8\sqrt{x}-3)+(7\sqrt{x}-7)}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{4(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+3)}=\frac{4}{\sqrt{x}+3}\)
Dễ thấy $A>0$
$\sqrt{x}+3\geq 3\Rightarrow A\leq \frac{4}{3}$
Vậy $0< A\leq \frac{4}{3}$.
$A$ nguyên $\Leftrightarrow A=1\Leftrightarrow \frac{4}{\sqrt{x}+3}=1$
$\Leftrightarrow \sqrt{x}=1\Leftrightarrow x=1$ (trái đkxđ)
Vậy không tồn tại $x$ để $A$ nguyên.
a: ĐKXĐ: x>=0; x<>25
Sửa đề: \(Q=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
\(=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{x-10\sqrt{x}+25}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
b: Q=-3/7
=>\(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=-\dfrac{3}{7}\)
=>7căn x-35=-3căn x-15
=>10căn x=20
=>x=4
c: Q nguyên
=>căn x+5-10 chia hết cho căn x+5
=>căn x+5 thuộc {5;10}
=>căn x thuộc {0;5}
Kết hợp ĐKXĐ, ta được: x=0
a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3}{\sqrt{x}-3}\)
\(a,dkxd:x\ge0,x\ne4\)
\(b,B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\dfrac{1}{\sqrt{x}-2}\\ =\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\sqrt{x^2}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(c,x=16\left(tm\right)\Rightarrow B=\dfrac{\sqrt{16}+2}{\sqrt{16}\left(\sqrt{16}-2\right)}=\dfrac{4+2}{4\left(4-2\right)}=\dfrac{6}{8}=\dfrac{3}{4}\)
\(d,B>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Leftrightarrow\sqrt{x}+2>0\Leftrightarrow\sqrt{x}>-2\left(ktm\right)\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Kết hợp với \(dk:x\ge0\) ta kết luận \(0\le x< 4\) thì \(B>0\).
a) Điều kiện xác định:
\(\left\{{}\begin{matrix}x-2\sqrt{x}\ne0\\x\ge0\end{matrix}\right.\)\(\Leftrightarrow x>0,x\ne4\)
Vậy...
b) \(B=\dfrac{\sqrt{x}.\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)^2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)^2}\)\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
Vậy \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
c) Tại x=16 ( thỏa mãn đk) thay vào B đã rút gọn ta được:
\(B=\dfrac{\sqrt{16}+2}{\sqrt{16}\left(\sqrt{16}-2\right)}=\dfrac{3}{4}\)
d) \(B>0\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\)
\(\Leftrightarrow\sqrt{x}-2>0\)\(\Leftrightarrow\sqrt{x}>2\Leftrightarrow x>4\)
Vậy x>4 thì B>0
a: ĐKXĐ: x>0; x<>1
b: \(A=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{x-1}\)
c: A nguyên
=>x-1 thuộc {1;-1;2;-2}
=>x thuộc {2;3}
ĐK: x\(\ge0\)
\(Tacó:A=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3-4}{\sqrt{x+3}}\\ =\dfrac{\sqrt{x}+3}{\sqrt{x}+3}-\dfrac{4}{\sqrt{x}-3}=1-\dfrac{4}{\sqrt{x}-3}\)
Ta thấy để A là số nguyên thì \(\dfrac{4}{\sqrt{x}-3}nguyên\\ =>\sqrt{x}-3\inƯ\left(4\right)\)
\(=>\left\{{}\begin{matrix}\sqrt{x}-3=\pm1< =>x=16;x=4\\\sqrt{x}-3=\pm2< =>x=25;x=1\\\sqrt{x}-3=\pm4< =>x=49\\\end{matrix}\right.\)
Vậy S=....