Cho x, y thuộc R thỏa x+y=4. C/m
\(\dfrac{xy}{x+y+2}< =\sqrt{2}-1\) ( bé hơn hoặc = ạ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Aki Tsuki Mysterious Person Phùng Khánh Linh Nhã DoanhQuoc Tran Anh Le Nguyễn Thị Ngọc Thơ lê thị hương giang giúp mình vs
a) \(x\ne yvàx;y>0\)
ta có : \(P=\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}-\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-y\)
\(\Leftrightarrow P=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}-y\)
\(\Leftrightarrow P=\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}-\sqrt{y}\right)-y\)
\(\Leftrightarrow P=2\sqrt{y}-y\)
b) ta có : \(P-1=2\sqrt{y}-y-1=-\left(\sqrt{y}-1\right)^2\le0\)
\(\Rightarrow P\le1\)
bài này không thể chứng minh \(P< 1\) đc .
ĐKXĐ: x≠y,x>0,y>0
a) \(P=\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}-\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-y=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}-\dfrac{x+2\sqrt{xy}+y-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}-y=\sqrt{x}+\sqrt{y}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}-y=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}-y=2\sqrt{y}-y\)b) Ta có \(\left(\sqrt{y}-1\right)^2>0\Leftrightarrow y-2\sqrt{y}+1>0\Leftrightarrow1>2\sqrt{y}-y\Leftrightarrow P< 1\)
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/voi-0-xy-dfrac12-chung-minhdfracsqrtxy1dfracsqrtyx1-dfrac2sqrt23.461470553384
Có : \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}-2\sqrt{y}=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)=0\)
\(\Leftrightarrow\sqrt{x}=2\sqrt{y}\) (Do \(\sqrt{x}+\sqrt{y}+1>0,\forall x;y>0\))
\(\Leftrightarrow x=4y\)
Khi đó \(P=\dfrac{7y}{\left(2\sqrt{y}+3\sqrt{y}\right).\left(\sqrt{x}+2\sqrt{y}\right)}\)
\(=\dfrac{7y}{5\sqrt{y}.4\sqrt{y}}=\dfrac{7}{20}\)