K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(B=\dfrac{6-7x}{x^2-4}+\dfrac{3}{x+2}-\dfrac{2}{2-x}\)

\(=\dfrac{6-7x+3x-6+2x+4}{\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{-2x+4}{\left(x+2\right)\left(x-2\right)}\)

\(=-\dfrac{2}{x+2}\)

25 tháng 8 2021

MN ƠI GIÚP EM VS 15PHÚT NX EM PK NỘP R =(((

15 tháng 12 2021

a) ĐKXĐ: \(x\ne-3,x\ne2\)

b) \(A=\dfrac{\left(x-2\right)\left(x+2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\dfrac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{x-4}{x-2}\)

c) \(A=\dfrac{x-4}{x-2}=\dfrac{3-4}{3-2}=-1\)

a: |x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2(nhận) hoặc x=4(loại)

Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)

b: ĐKXĐ: x<>4; x<>-4

\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)

\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)

=-4x/x-4

c: A+B

=-4x/x-4+x^2+4/x-4

=(x-2)^2/(x-4)
A+B>0

=>x-4>0

=>x>4

2 tháng 1 2023

\(a,đk\left(B\right):x\ne\pm3\\ B=\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\\ =\dfrac{3}{x-3}+\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}\\ =\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{x^2-9}\\ =\dfrac{3x+9+6x+x^2-3x}{x^2-9}\\ =\dfrac{x^2+6x+9}{x^2-9}\\ =\dfrac{\left(x+3\right)^2}{x^2-9}\\ =\dfrac{x+3}{x-3}\)

\(b,P=A.B\\ =\dfrac{x+1}{x+3}\times\dfrac{x+3}{x-3}\\ =\dfrac{x+1}{x-3}\)

\(c,\) Để P nguyên 

\(\dfrac{x+1}{x-3}=1+\dfrac{4}{x-3}\)

=> \(x-3\inƯ\left(4\right)\)

\(Ư\left(4\right)=\left\{-1;1;2;-2;4;-4\right\}\)

\(=>x=\left\{2;4;5;1;7;-1\right\}\)

15 tháng 12 2021

\(a,ĐK:x\ne\pm1\\ b,B=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\\ c,B=-\dfrac{1}{2}\Leftrightarrow2\left(x+1\right)=-2\Leftrightarrow x+1=-1\Leftrightarrow x=-2\left(tm\right)\)

19 tháng 11 2021

\(a,ĐK:x\ne0;x\ne1;x\ne\pm2\\ b,A=\left[\dfrac{2+x}{2-x}-\dfrac{2-x}{2+x}+\dfrac{4x^2}{\left(2-x\right)\left(x+2\right)}\right]\cdot\dfrac{x\left(2-x\right)}{x-1}\\ A=\dfrac{x^2+4x+4-x^2+4x-4+4x^2}{\left(2-x\right)\left(x+2\right)}\cdot\dfrac{x\left(2-x\right)}{x-1}\\ A=\dfrac{4x\left(x+1\right)\cdot x}{\left(x+2\right)\left(x-1\right)}=\dfrac{4x^2}{x+2}\)

30 tháng 12 2021

a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(A=\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\)

\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-4x^2-8x}{\left(x-2\right)\left(x+2\right)}=\dfrac{-4x}{x-2}\)

30 tháng 10 2023

a) ĐKXĐ: 

\(\left\{{}\begin{matrix}x^2-9\ne0\\x+3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm3\\x\ne-3\end{matrix}\right.\Leftrightarrow x\ne\pm3\) 

b) \(A=\dfrac{x+15}{x^2-9}-\dfrac{2}{x+3}\)

\(A=\dfrac{x+15}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{x+15-2x+6}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{21-x}{\left(x+3\right)\left(x-3\right)}\)

c) Thay x = - 1 vào A ta có: 

\(A=\dfrac{21-\left(-1\right)}{\left(-1+3\right)\left(-1-3\right)}=\dfrac{21+1}{2\cdot-4}=\dfrac{22}{-8}=-\dfrac{11}{4}\)