K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

\(\dfrac{15}{11.14}+\dfrac{15}{14.17}+\dfrac{15}{17.20}+...+\dfrac{15}{68.71}\)

\(=5\left(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+...+\dfrac{1}{68}-\dfrac{1}{71}\right)\)

\(=5\left(\dfrac{1}{11}-\dfrac{1}{71}\right)\)

\(=5.\dfrac{60}{781}\)

\(=\dfrac{300}{781}\)

3 tháng 3 2017

\(\frac{15}{11.14}+\frac{15}{14.17}+\frac{15}{17.20}+...+\frac{15}{72.75}\)

\(=5\left(\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}+...+\frac{3}{72.75}\right)\)

\(=5\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+...+\frac{1}{72}-\frac{1}{75}\right)\)\(=5\left(\frac{1}{11}-\frac{1}{75}\right)\)

\(=\frac{64}{165}\)

3 tháng 3 2017

pài này gần giống pài troq v15

8 tháng 8 2018

\(\frac{3}{15}\cdot G=\frac{3}{11\cdot14}+\frac{3}{14\cdot17}+...+\frac{3}{68\cdot71}\)

\(\frac{3}{15}\cdot G=\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{68}-\frac{1}{71}\)

\(\frac{3}{15}\cdot G=\frac{1}{11}-\frac{1}{71}\)

\(G=\frac{60}{781}\cdot\frac{15}{3}\)

\(G=\frac{300}{781}\)

8 tháng 8 2018

ta có :\(\frac{3}{15}G=\left(\frac{15}{11.14}+\frac{15}{14.17}+...+\frac{15}{68.71}\right)\)

\(\frac{3}{15}G=\frac{3}{11.14}+\frac{3}{14.17}+...+\frac{3}{68.71}\)

\(\frac{3}{15}G=\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{68}-\frac{1}{71}\)

\(\frac{3}{15}G=\frac{1}{11}-\frac{1}{71}=\frac{71}{781}-\frac{11}{781}=\frac{60}{781}\)

\(=>G=\frac{60}{781}:\frac{3}{15}=\frac{900}{2343}\)

vậy G =900/2343

12 tháng 3 2017

theo bài ra ta có:

\(E=\dfrac{15}{11.14}+\dfrac{15}{14.17}+\dfrac{15}{17.20}+...+\dfrac{15}{74.77}\\ \Rightarrow\dfrac{1}{5}E=\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}+...+\dfrac{3}{74.77}\\ \dfrac{1}{5}E=\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+...+\dfrac{1}{74}-\dfrac{1}{77}\\ \dfrac{1}{5}E=\dfrac{1}{11}-\dfrac{1}{77}\\ \dfrac{1}{5}E=\dfrac{7}{77}-\dfrac{1}{77}=\dfrac{6}{77}\\ \Rightarrow E=\dfrac{6}{77}.5\\ E=\dfrac{30}{77}\)

5 .\((\)\(\dfrac{3}{11.14}+\dfrac{3}{14.17}+...+\dfrac{3}{74.77}\))

= 5. (\(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+...+\dfrac{1}{74}-\dfrac{1}{77}\))

= 5.(\(\dfrac{1}{11}-\dfrac{1}{77}\))

= 5. \(\dfrac{6}{77}\)

= \(\dfrac{30}{77}\)

8 tháng 7 2017

\(A=\dfrac{14}{8.11}+\dfrac{14}{11.14}+\dfrac{14}{14.17}+.....+\dfrac{14}{197.200}\)

\(A=\dfrac{14}{3}\left(\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+...+\dfrac{1}{197}-\dfrac{1}{200}\right)\)

\(A=\dfrac{14}{3}.\left(\dfrac{1}{8}-\dfrac{1}{200}\right)\)

\(A=\dfrac{14}{3}.\dfrac{24}{200}=\dfrac{28}{25}\)

\(B=\dfrac{7}{15}+\dfrac{7}{35}+\dfrac{7}{63}+...+\dfrac{7}{399}\)

\(B=\dfrac{7}{3.5}+\dfrac{7}{5.7}+\dfrac{7}{7.9}+.....\dfrac{7}{19.21}\)

\(B=\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\)

\(B=\dfrac{7}{2}.\left(\dfrac{1}{3}-\dfrac{1}{21}\right)\)

\(B=\dfrac{7}{2}.\dfrac{6}{21}=1\)

15 tháng 7 2023

`3x-15/(5*8)-15/(8*11)-15/(11*14)-...-15/(47*50)=2 1/10`

`3x-(15/(5*8)+15/(8*11)+15/(11*14)+...+15/(47*50))=21/10`

`3x-5(3/(5*8)+3/(8*11)+3/(11*14)+...+3/(47*50))=21/10`

`3x-5(1/5-1/8+1/8-1/11+1/11-1/14+...+1/47-1/50)=21/10`

`3x-5(1/5-1/50)=21/10`

`3x-5*9/50=21/10`

`3x-9/10=21/10`

`3x=21/10+9/10`

`3x=3`

`x=1`

13 tháng 3 2017

\(\frac{15}{11.14}+\frac{15}{14.17}+\frac{15}{17.20}+.......+\frac{15}{74.77}\)

\(=5\left(\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}+.......+\frac{3}{74.77}\right)\)

\(=5\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+.....+\frac{1}{74}-\frac{1}{77}\right)\)

\(=5\left(\frac{1}{11}-\frac{1}{77}\right)\)

\(=5\left(\frac{7}{77}-\frac{1}{77}\right)\)

\(=5.\frac{6}{77}\)

\(=\frac{30}{77}\)

15 tháng 4 2019

\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)

\(=\frac{1}{3}-\frac{1}{21}\)

\(=\frac{7}{21}-\frac{1}{21}=\frac{6}{21}\)

15 tháng 4 2019

\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)

\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)

\(A=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)+...+\left(\frac{1}{19}-\frac{1}{19}\right)-\frac{1}{21}\)

\(A=\frac{1}{3}-\frac{1}{21}\)

\(A=\frac{2}{7}\)

1 tháng 4 2023

\(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}\)

\(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}\)

\(=\dfrac{1}{2}-\dfrac{1}{17}\)

\(=\dfrac{15}{34}\)

Vì \(\dfrac{15}{34}< \dfrac{1}{2}=>\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot27}< \dfrac{1}{2}\)