tim so tu nhien n
A= n+5 chia het cho n+2
B= 4n +9 chia het cho n+1
C=n^2 +2n+5 chia het cho n+1
ai nhanh va dung nhat minh tich cho nhe
nho trinh bay cach lam nhe
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,10⋮n\Rightarrow n\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5\pm10\right\}.\)
\(\Rightarrow n\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(b,12⋮n-1\Rightarrow n-1\inƯ\left(12\right)\left\{\pm1;\pm2;\pm3\pm4;\pm6;\pm12\right\}\)
\(d,n+5⋮n+1\Rightarrow n+1+4⋮n+1.\)
mà \(n+1⋮n+1\Rightarrow4⋮n+1\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n+1 = 1 => n = 0
n + 1 = -1 => -2
..... tương tự vs 2; -2 ; 4 ; -4
\(e,n+7⋮n+2\Rightarrow n+2+5⋮n+2\)
mà \(n+2⋮n+2\Rightarrow5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n+2 = 1 => n = -1
n + 2 = -1 => n = 3
.... tương tự vs 5 và -5
\(f,2n+5⋮2n+1\Rightarrow2n+1+4⋮2n+1\)
\(\Rightarrow2n+1⋮2n+1\Rightarrow4⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
...... tự lm
a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên
4n - 5 chia hết cho 2n - 1
ta có : 4n - 5 = 4n - 2 - 3 = ( 4n - 2 ) - 3 = 2 ( 2n - 1 ) - 3
để 4n - 5 chia hết cho 2n - 1 thì 2 ( 2n - 1 ) chia hết cho 2n - 1
=> -3 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư ( -3 )
lập bảng ta có :
2n - 1 | -3 | 3 | -1 | 1 |
n | -1 | 2 | 0 | 1 |
vậy n = { -1 ; 2 ; 0 ; 1 }
Ta có : 4n - 5 chia hết cho 2n - 1
<=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2.(2n - 1) - 3 chia hết cho 2n - 1
=> 3 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng:
2n - 1 | -3 | -1 | 1 | 3 |
2n | -2 | 0 | 2 | 4 |
n | -1 (loại) | 0 | 1 | 2 |
Câu 1: (n+3) (n+6) (1)
Ta xét 2 trường hợp:
+Nếu n là lẻ thì n+3 là chẵn, n+6 là lẻ. Tích giữa 1 số chẵn và 1 số lẻ là số chẵn => (n+3) (n+6) chia hết cho 2.
+Nếu n là chẵn thì n+3 là lẻ, n+6 là chẵn. Tích giữa 1 số lẻ và 1 số chẵn là số chẵn => (n+3) (n+6) chia hết cho 2.
Vậy với mọi số tự nhiên n thì tích (n+3) (n+6) chia hết cho 2.
6n-5 chia hết cho 2n+3
=> 6n+9-14 chia hết cho 2n+3
=> 3(2n+3)-14 chia hết cho 2n+3
=> 14 chia hết cho 2n+3
=> 2n+3 là ước của 14
Mà 2n+3 là số nguyên lẻ
=> 2n+3 thuộc {-1;1}
=> n thuộc {-2;-1}
Gọi số đó là abcd
Vì số lớn nhất có 4 chứ nên a=9
Vì số đó chia hết cho 2 và 5 nên d=0
Vì số đólà số lớn nhất có 4 chữ số khác nhau nên b=8 nên c chỉ có thể bằng
9+8+0=17
=> Để số đó là số lớn nhất có 4 chữ số lại chia hết cho 9 nên c= 1 vì 18-17=1
Vậy abcd =9810
Hok tốt#
Gọi số đó là abcd
Vì số lớn nhất có 4 chứ nên a=9
Vì số đó chia hết cho 2 và 5 nên d=0
Vì số đólà số lớn nhất có 4 chữ số khác nhau nên b=8 nên c chỉ có thể bằng
9+8+0=17
=> Để số đó là số lớn nhất có 4 chữ số lại chia hết cho 9 nên c= 1 vì 18-17=1
Vậy abcd =9810
Hok tốt#
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
a) Ta có :
\(n+5⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Leftrightarrow3⋮n+2\)
Vì \(n\in N\Leftrightarrow n+2\in N;n+2\inƯ\left(3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+2=1\Leftrightarrow n=-1\left(loại\right)\\n+1=3\Leftrightarrow n=2\left(tm\right)\end{matrix}\right.\)
Vậy ....
b) Ta có :
\(4n+9⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+9⋮n+1\\4n+4⋮n+1\end{matrix}\right.\)
\(\Leftrightarrow5⋮n+1\)
Vì \(n\in N\Leftrightarrow n+1\in N;n+1\inƯ\left(5\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1=1\Leftrightarrow n=0\\n+1=5\Leftrightarrow n=4\end{matrix}\right.\)
Vậy ....