K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

Giải:

a) \(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}...\dfrac{99^2}{99.100}\)

\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{99}{100}\)

\(=\dfrac{1}{100}\)

Vậy giá trị của biểu thức trên là \(\dfrac{1}{100}\).

b) \(\left(\dfrac{2}{175}-\dfrac{7}{25}+\dfrac{3}{5}\right).\left(\dfrac{4}{11}+\dfrac{3}{121}-\dfrac{47}{121}\right)\)

\(=\left(\dfrac{2}{175}-\dfrac{7}{25}+\dfrac{3}{5}\right).\left(\dfrac{44}{121}+\dfrac{3}{121}-\dfrac{47}{121}\right)\)

\(=\left(\dfrac{2}{175}-\dfrac{7}{25}+\dfrac{3}{5}\right).\dfrac{0}{121}\)

\(=\left(\dfrac{2}{175}-\dfrac{7}{25}+\dfrac{3}{5}\right).0\)

\(=0\)

Vậy giá trị của biểu thức trên là 0.

c) \(-\dfrac{2}{5}\left(\dfrac{15}{17}-\dfrac{9}{15}\right)-\dfrac{2}{5}\left(\dfrac{2}{17}+\dfrac{-2}{5}\right)\)

\(=-\dfrac{2}{5}\left[\left(\dfrac{15}{17}-\dfrac{9}{15}\right)+\left(\dfrac{2}{17}+\dfrac{-2}{5}\right)\right]\)

\(=-\dfrac{2}{5}\left(\dfrac{15}{17}-\dfrac{9}{15}+\dfrac{2}{17}+\dfrac{-2}{5}\right)\)

\(=-\dfrac{2}{5}\left(1-1\right)\)

\(=-\dfrac{2}{5}.0\)

\(=0\)

Vậy giá trị của biểu thức trên là 0.

Chúc bạn học tốt!!!

10 tháng 8 2017

\(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^3}{3.4}...\dfrac{99^2}{99.100}\)

\(=\dfrac{1.1}{1.2}.\dfrac{2.2}{2.3}.\dfrac{3.3}{3.4}....\dfrac{99.99}{99.100}\)

\(=\dfrac{1.1.2.2.3.3.....99.99}{1.2.2.3.3.4....99.100}\)

\(=\dfrac{1.2.3...99}{1.2.3....99}.\dfrac{1.2.3....99}{2.3.4....100}=1.\dfrac{1}{100}=\dfrac{1}{100}\)

30 tháng 3 2018

b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)

Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhéhaha

30 tháng 3 2018

cảm ơn bạn

25 tháng 3
Giải:

a) S = 1.2 + 2.3 + 3.4 + ... + 99.100

S có thể được viết lại thành:

S = 1(2 - 0) + 2(3 - 1) + 3(4 - 2) + ... + 99(100 - 98)

= 1.2 - 0 + 2.3 - 1 + 3.4 - 2 + ... + 99.100 - 98

= (1.2 + 2.3 + 3.4 + ... + 99.100) - (0 + 1 + 2 + ... + 98)

Để tính tổng 1.2 + 2.3 + 3.4 + ... + 99.100, ta sử dụng công thức:

S = n(n+1)(2n+1)/6

Với n = 99, ta có:

S = 99.100.199/6 = 331650

Tính tổng 0 + 1 + 2 + ... + 98, ta sử dụng công thức:

S = n(n+1)/2

Với n = 98, ta có:

S = 98.99/2 = 4851

Do đó, S = 331650 - 4851 = 326799

b) B = 4924.12517.28−530.749.45529.162.748

B có thể được viết lại thành:

B = (4924.12517.28) / (530.749.45529.162.748)

B = (4924 / 530) . (12517 / 749) . (28 / 45529) . (162 / 162) . (748 / 748)

B = 9.17.28/45529 = 2^2 . 3^2 . 17 / 45529

B = 108 / 45529

c) C = (13+132+133+134).35+(135+136+137+138).39+...+(1397+1398+1399+13100).3101

C = (13(1 + 13 + 13^2 + 13^3)) . 3^5 + (13^5(1 + 13 + 13^2 + 13^3)) . 3^9 + ... + (13^97(1 + 13 + 13^2 + 13^3)) . 3^101

C = (1 + 13 + 13^2 + 13^3) . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)

C = 80 . (13^5 . 3^5 + 13^9 . 3^9 + ... + 13^97 . 3^101)

C = 80 . (13^5 . 3^4 . 3 + 13^9 . 3^8 . 3 + ... + 13^97 . 3^96 . 3)

C = 80 . (13^6 . 3^5 + 13^10 . 3^9 + ... + 13^98 . 3^97)

C = 80 . 3^5 (13^6 + 13^10 + ... + 13^98)

d) D = 3 - 3^2 + 3^3 - 3^4 + ... + 3^2017 - 3^2018

D = (3 - 3^2) + (3^3 - 3^4) + ... + (3^

26 tháng 4 2022

bạn hãy rút gọn vế phải: x/200=1/2.2/3.3/4......98/99.99/100

  Rồi sẽ có cái phương trình:x/200=1/100

từ đó suy ra:x/200=2/200 =>x=2

:)))))

27 tháng 4 2022

\(\dfrac{x}{200}=\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}...\dfrac{99^2}{99.100}\)

\(\Leftrightarrow\dfrac{x}{200}=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{99}{100}\)

\(\Leftrightarrow\dfrac{x}{200}=\dfrac{1}{100}\)

\(\Leftrightarrow x=2\)

11: \(=\left(1+\dfrac{1}{98}-1-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{98}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\right)=0\)

12: \(=\dfrac{7}{17}+\dfrac{10}{17}\cdot\left(\dfrac{-6+5}{10}\right)^2\)

\(=\dfrac{7}{17}+\dfrac{10}{17}\cdot\dfrac{1}{100}=\dfrac{7}{17}+\dfrac{1}{170}=\dfrac{71}{170}\)

25 tháng 1 2021

\(\left(1\dfrac{3}{4}-\dfrac{4}{6}\right):\left(1\dfrac{1}{5}+2\dfrac{2}{5}+\dfrac{1}{5}\right)< x< 1\dfrac{1}{5}.1\dfrac{1}{4}+3\dfrac{2}{11}:2\dfrac{3}{121}\)

\(\Leftrightarrow\left(\dfrac{7}{4}-\dfrac{4}{6}\right):\left(\dfrac{6}{5}+\dfrac{12}{5}+\dfrac{1}{5}\right)< x< \dfrac{6}{5}.\dfrac{5}{4}+\dfrac{35}{11}:\dfrac{245}{121}\) \(\Leftrightarrow\left(\dfrac{21}{12}-\dfrac{8}{12}\right):\dfrac{19}{5}< x< \dfrac{3}{2}+\dfrac{35}{11}.\dfrac{121}{245}\) \(\Leftrightarrow\dfrac{13}{12}.\dfrac{5}{19}< x< \dfrac{3}{2}+\dfrac{2}{7}\) \(\Leftrightarrow\dfrac{65}{228}< x< \dfrac{21}{14}+\dfrac{4}{14}\) \(\Leftrightarrow\dfrac{65}{228}< x< \dfrac{25}{14}\) \(\Leftrightarrow x=1\)
10 tháng 9 2017

ngu như con bò tót, ko biết 1+1=2.

Bài 1: 

a) Ta có: \(\dfrac{7^4\cdot3-7^3}{7^4\cdot6-7^3\cdot2}\)

\(=\dfrac{7^3\cdot\left(7\cdot3-1\right)}{7^3\cdot2\left(7\cdot3-1\right)}\)

\(=\dfrac{1}{2}\)

c) Ta có: \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

\(\Leftrightarrow\dfrac{1}{3}\cdot E=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)

\(\Leftrightarrow E-\dfrac{1}{3}\cdot E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)

\(\Leftrightarrow E\cdot\dfrac{2}{3}=1-\dfrac{1}{3^{101}}\)

\(\Leftrightarrow E=\dfrac{3-\dfrac{3}{3^{101}}}{2}=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)

9 tháng 1 2021

thanks