1) M=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt[]{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a) Tìm điều kiện xác định
b) Tìm x thuộc Z để M có giá trị nguyên
c) Tìm x để \(M+\dfrac{1}{M}+2=0\)
2) \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
3) Chứng minh \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}:\sqrt{a}\right).\left(\dfrac{1-\sqrt{a}}{1-a}\right)=1\)
với a lớn hơn hoặc bằng 0 và a khác 1
Giải giúp mk nhé. Ths
2. \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}=\)
\(\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{4+\sqrt{25}}=\sqrt{4+5}=3\)
3. Ta có: VT=\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}:\sqrt{a}\right).\left(\dfrac{1-\sqrt{a}}{1-a}\right)=\left[\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}.\dfrac{1}{\sqrt{a}}\right].\left[\dfrac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]=\dfrac{1+\sqrt{a}+a}{\sqrt{a}}.\dfrac{1}{1+\sqrt{a}}=\dfrac{1+\sqrt{a}+a}{\sqrt{a}+a}=\dfrac{1}{\sqrt{a}+a}+1\)
??? Sao rút gọn rồi ra kì vậy nhờ =="
1,
a.
\(\left[{}\begin{matrix}x-5\sqrt{x}+6\ne0\\\sqrt{x}-2\ne0\\3-\sqrt{x}\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\ne0\\\sqrt{x}\ne2\\\sqrt{x}\ne3\end{matrix}\right.\)
\(\left[{}\begin{matrix}\sqrt{x}\ne3\\\sqrt{x}\ne2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ne9\\x\ne4\end{matrix}\right.\)
Vậy ĐKXĐ : \(\left[{}\begin{matrix}x\ne9\\x\ne4\end{matrix}\right.\)