K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

\(\left(x-2\right)^{20}\ge0\forall x\\ \left(y+1\right)^{30}\ge0\forall x\\ \Rightarrow\left(x-2\right)^{20}+\left(y+1\right)^{30}\ge0\forall x\)

\(\left(x-2\right)^{20}+\left(y+1\right)^{30}=0\)

Để thỏa mãn điều kiện thì \(\left\{{}\begin{matrix}\left(x+2\right)^{20}=0\\\left(y+1\right)^{30}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

Vậy ...

10 tháng 8 2017

ta có : \(\left(x-2\right)^{20}\ge0\) với mọi x

\(\left(y+1\right)^{30}\ge0\) với mọi y

\(\Rightarrow\) \(\left(x-2\right)^{20}+\left(y+1\right)^{30}\ge0\) với mọi giá trị của x ; y

\(\left(x-2\right)^{20}+\left(y+1\right)^{30}\le0\)

\(\Rightarrow\) \(\left(x-2\right)^{20}+\left(y+1\right)^{30}=0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^{20}=0\\\left(y+1\right)^{30}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) vậy \(x=2;y=-1\)

15 tháng 9 2021

a) \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)( do \(x^2\ge0,\left(y-\dfrac{1}{10}\right)^4\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

b) \(\left(\dfrac{1}{2}.x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\)( do \(\left(\dfrac{1}{2}x-5\right)^{20}\ge0,\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

15 tháng 9 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\\ b,\left\{{}\begin{matrix}\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\end{matrix}\right.\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

Mà \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

Vì \(\left(\frac{1}{2}x-5\right)^{10}\ge0\)và \(\left(y^2-\frac{1}{4}\right)^{20}\ge0\)

nên \(\left(\frac{1}{2}x-5\right)^{10}+\left(y^2-\frac{1}{4}\right)^{20}=0\)

<=>\(\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}}\)<=>\(\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}\)

12 tháng 2 2020

Ta có:\(\hept{\begin{cases}\left\{\frac{1}{2}x-5\right\}^{10}\ge0\forall x\\\left\{y^2-\frac{1}{4}\right\}^{20}\ge0\forall y\end{cases}}\)

Mà \(\left\{\frac{1}{2}x-5\right\}^{10}+\left\{y^2-\frac{1}{4}\right\}^{20}\le0\)

\(\Rightarrow\left\{\frac{1}{2}x-5\right\}^{10}+\left\{y^2-\frac{1}{4}\right\}^{20}=0\)

\(\Leftrightarrow\hept{\begin{cases}\left\{\frac{1}{2}x-5\right\}^{10}=0\\\left\{y^2-\frac{1}{4}\right\}^{20}=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}}\)

Vậy \(x=10;y=\pm\frac{1}{2}\)

3 tháng 11 2015

kết quả là 6596 nhá 
Tick mình nha

28 tháng 9 2021

a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)

Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)

Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)

17 tháng 9 2017

Để\(\left(\dfrac{1}{2}\times x-5\right)^{20}+\left(y^2-\dfrac{1}{2}\right)^{20}\le0\) thì \(\left(\dfrac{1}{2}\times x-5\right)\)\(\left(y^2-\dfrac{1}{2}\right)\le0\) .

Để \(\left(\dfrac{1}{2}\times x-5\right)\)\(\left(y^2-\dfrac{1}{2}\right)\le0\) thì \(\dfrac{1}{2}\times x\le5\) \(y^2\le\dfrac{1}{2}\).

Vậy ta có :

\(\dfrac{x}{2}\le5\Rightarrow x\le10\)

\(y^2\le\dfrac{1}{2}\Rightarrow y\le\dfrac{1}{4}\)