cho tam giác abc.gọi m là trung điểm của ac , n là trung điểm của ab. trên tia đối của tia mb lấy điểm e sao cho me bằng mb, trên tia đối của tia nc lấy điểm f sao cho nf bằng nc. chứng minh a tam giác mae bằng tam giác mcb b ae bang af cba diem a e f thang hang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Xét tam giác MAE và tam giác MCB có:
ME = MB (gt)
MA = MC (gt)
Góc M1 = góc M2 (đối đỉnh)
=> Tam giác MAE = Tam giác MCB (c.g.c)
2. Xét tứ giác AEBC có:
M là trung điểm BE (gt)
M là trung điểm AC (gt)
=> Tứ giác AEBC là hình bình hành
=> AE // BC và AE = BC (1)
Xét tứ giác FABC có:
N là trung điểm BA (gt)
N là trung điểm FC (gt)
=> Tứ giác FABC là hình bình hành
=> FA // BC và FA = BC (2)
Từ (1), (2) => AE = AF
a) Xét ΔAME và ΔCMB có
AM=CM(M là trung điểm của AC)
\(\widehat{AME}=\widehat{CMB}\)(hai góc đối đỉnh)
ME=MB(gt)
Do đó: ΔAME=ΔCMB(c-g-c)
⇒AE=BC(hai cạnh tương ứng)
b) Ta có: ΔAME=ΔCMB(cmt)
nên \(\widehat{EAM}=\widehat{BCM}\)(hai góc tương ứng)
mà \(\widehat{EAM}\) và \(\widehat{BCM}\) là hai góc ở vị trí so le trong
nên AE//BC(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔANF và ΔBNC có
AN=BN(N là trung điểm của AB)
\(\widehat{ANF}=\widehat{BNC}\)(hai góc đối đỉnh)
NF=NC(gt)
Do đó: ΔANF=ΔBNC(c-g-c)
⇒AF=BC(hai cạnh tương ứng)
Ta có: ΔANF=ΔBNC(cmt)
nên \(\widehat{AFN}=\widehat{BCN}\)(hai góc tương ứng)
mà \(\widehat{AFN}\) và \(\widehat{BCN}\) là hai góc ở vị trí so le trong
nên AF//BC(Dấu hiệu nhận biết hai đường thẳng song song)
mà AE//BC(cmt)
và AF,AE có điểm chung là A
nên F,A,E thẳng hàng(1)
Ta có: AE=BC(cmt)
mà AF=BC(cmt)
nên AE=AF(2)
Từ (1) và (2) suy ra A là trung điểm của EF(đpcm)
Xét ΔMAE và ΔMCB có:
MA = MC (M là trung điểm của AC)
∠AME = ∠CMB (2 góc đối đỉnh)
ME = MB (gt)
⇒ ΔMAE = ΔMCB (c.g.c)
⇒ AE = BC (2 cạnh tương ứng) (1)
Xét ΔNAF và ΔNBC có:
NA = NB (N là trung điểm của AB)
∠ANF = ∠BNC (2 góc đối đỉnh)
NF = NC (gt)
⇒ ΔNAF = ΔNBC (c.g.c)
⇒ AF = BC (2 cạnh tương ứng) (2)
Từ (1) và (2) ⇒ AE = AF
Ta có: ΔMAE = ΔMCB (cmt)
⇒ ∠MAE = ∠MCB (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong ⇒ AE // BC (3)
Ta có: ΔNAF = ΔNBC (cmt)
⇒ ∠NAF = ∠NBC (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong ⇒ AF // BC (4)
Từ (3) và (4) ⇒ 3 điểm E, A, F thẳng hàng
c, Xét \(\Delta AME\)và \(\Delta CMB\)có:
AM=CM(M là trung điểm của AC)
\(\widehat{AME}=\widehat{CMB}\)(2góc đối đỉnh)
ME=MB(gt)
\(\Rightarrow\)\(\Delta AME=\Delta CMB\)(c-g-c)
\(\Rightarrow\)AE=BC(2 cạnh tương ứng)(dpcm)
Do\(\Delta AME=\Delta CMB\)(c-g-c)
\(\Rightarrow\)\(\widehat{AEM}=\widehat{CBM}\)(2 góc tương ứng)
Mà 2 góc ở vị trí so le trong suy ra AE song song BC(dpcm)
a,Xét \(\Delta AMB\)và\(\Delta CME\)có
AM=CM(M là tđ của AC)
\(\widehat{AMB}=\widehat{CME}\)(2 góc đối đỉnh)
MB=ME(gt)
\(\Rightarrow\) \(\Delta AMB\)=\(\Delta CME\)(c-g-c)
\(\Rightarrow\)AB=CE(dpcm)
b, câu b tương tự câu a nhé
d, bạn chứng minh \(\Delta ANF=\Delta BNC\)(c-g-c)
\(\Rightarrow\)AF=BC (1)
lại có AE=BC(theo c) (2)
Từ (1), (2) \(\Rightarrow\)AE=AF
\(\Rightarrow\)A là trung điểm của EF(dpcm)
UKM THÌ CÓ BÀI TỰA VẬY BẠN SO ĐC CHỨ
a) Xét AIM và BIC có:IA = IB (do I là trung điểm của AB);AIM BIC(hai góc đối đỉnh);IM = IC (giảthiết).Do đó AIM = BIC (c.g.c)Suy ra AM = BC (hai cạnh tương ứng) và MAI CBI(hai góc tương ứng) Mà MAI, CBIlà hai góc ởvịtrí so le trong nên AM // BC.b) Xét ANE và CBE có:EA = EC (do E là trung điểm của AC);AEN CEB(hai góc đối đỉnh);EN= EB(giảthiết).Do đó ANE = CBE (c.g.c)Suy ra NAE BCE(hai góc tương ứng)Mà NAE, BCElà hai góc ởvịtrí so le trong nên AN// BC.c) Ta có AM // BC (theo câu a) và AN // BC (theo câu b)Do đó qua điểm A có hai đường thẳng song song với BC nên theo tiên đềEuclid, hai đường thẳng AM và AN trùng nhau hay ba điểm A, M, N thẳng hàng.Lại có ANE = CBE (theo câu b) nên AN = CB (hai cạnh tương ứng)Mặt khác AM = BC (theo câu a)Do đó AM = AN (cùng bằng BC) Mà ba điểm A, M, N thẳng hàng nên A là trung điểm của MN.a: Xét ΔAMB và ΔCMD có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔAMB=ΔCMD
b: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
=>AB//CD và AB=CD
c: Xét tứ giác AKBC có
N là trung điểm chung của AB và KC
nên AKBC là hình bình hành
=>AK//BC
mà AD//BC
nên D,A,K thẳng hàng
XÉT \(\Delta ABM\) VÀ \(\Delta ACN\) CÓ
AB=AC (GT)
AN=AM (GT)
\(\widehat{B}=\widehat{C}\) (VÌ TAM GIÁC ABC CÂN TẠI A)
=>\(\Delta AMB=\Delta ANC\left(cgc\right)\)
b;VÌ TAM GIÁC AMB=TAM GIÁC ANC =>BM=NC
XÉT \(\Delta BNC\) VÀ \(\Delta BMC\) CÓ
BM=NC
\(\widehat{MBC}=\widehat{NCB}\)
GÓC C CHUNG
=>AM GIÁC BNC=TAM GIÁC BMC (GCG)
C;
a: Xét ΔMAE và ΔMCB có
MA=MC
\(\widehat{AME}=\widehat{CMB}\)
ME=MB
Do đó: ΔMAE=ΔMCB
b: Xét tứ giác ACBF có
N là trung điểm của AB
N là trung điểm của CF
Do đó:ACBF là hình bình hành
Suy ra: AF=BC
mà AE=BC
nên AF=AE
c: Xét tứ giác ABCE có
M là trung điểm của AC
M là trung điểm của BE
Do đó: ABCE là hình bình hành
Suy ra: AE//BC
mà AF//BC
và AE,AF có điểm chung là A
nên F,A,E thẳng hàng