K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

Diện tích tứ giác ABCD bằng 60 bạn nhá

14 tháng 3 2018

Bác học lớp 9 phải ko bài này khá đơn giản mình thấy ai cũng làm đc chỉ cần độg não thui chứ bác hỏi thế rùi vô phòng thi thì sao lớp 9 phải tự học thui

a: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x^2=2x+3\\y=2x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{3;-1\right\}\\y\in\left\{9;1\right\}\end{matrix}\right.\)

b: A(3;9) B(-1;1)

\(OA=\sqrt{3^2+9^2}=3\sqrt{10}\)

\(OB=\sqrt{\left(-1\right)^2+1^2}=\sqrt{2}\)

\(AB=\sqrt{\left(-4\right)^2+\left(-8\right)^2}=4\sqrt{5}\)

\(\Leftrightarrow P=\dfrac{3\sqrt{10}+\sqrt{2}+4\sqrt{5}}{2}\)

\(S=\sqrt{\dfrac{3\sqrt{10}-\sqrt{2}+4\sqrt{5}}{2}\cdot\dfrac{3\sqrt{10}+\sqrt{2}+4\sqrt{5}}{2}\cdot\dfrac{-3\sqrt{10}+\sqrt{2}+4\sqrt{5}}{2}\cdot\dfrac{3\sqrt{10}+\sqrt{2}-4\sqrt{5}}{2}}\)

\(=\sqrt{\dfrac{576}{16}}=\dfrac{24}{4}=6\)

17 tháng 11 2017

Đáp án C

28 tháng 8 2023

\(\left\{{}\begin{matrix}\left(P\right):y=x^2\\\left(d\right):y=-x+2\end{matrix}\right.\)

a) Tọa độ giao điểm của (P) và (Q) là nghiệm của hệ phương trình

\(\left\{{}\begin{matrix}y=x^2\\y=-x+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x^2\\x^2=-x+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x^2\\x^2+x-2=0\left(1\right)\end{matrix}\right.\)

\(pt\left(1\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\) \(\left(a+b+c=1+1-2=0\right)\)

\(hpt\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=4\end{matrix}\right.\end{matrix}\right.\)

Vậy tọa độ giao điểm của (P) và (Q) là \(A\left(1;1\right)\&B\left(-2;4\right)\)

 

28 tháng 8 2023

a) Phương trình hoành độ giao điểm : 

x2 = - x + 2

<=> (x - 1)(x + 2)  = 0 

<=> \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Với x = 1 ta được y = 1

Với x = -2 ta được y = 4

Vậy tọa độ giao điểm là A(1; 1) ; B(-2;4)

b) Gọi C(-2 ; 0) ; D(1;0) 

ta được \(S_{AOB}=S_{ABCD}-S_{BOC}-S_{AOD}\)

\(=\dfrac{\left(BC+AD\right).CD}{2}-\dfrac{BC.CO}{2}-\dfrac{AD.DO}{2}\)

\(=\dfrac{\left(4+1\right).3}{2}+\dfrac{4.2}{2}+\dfrac{1.1}{2}=12\) (đvdt)