BT1: So sánh:
1) \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}\) VỚI 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)
Rõ ràng ta thấy : \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\) (1)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\) (2)
Từ (1) và (2), suy ra :
\(\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)
Vậy ......................
~ Học tốt ~
Ta có : \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)
\(=3+\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)
Vậy \(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)
\(A>\dfrac{2^{2018}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{3^{2019}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{5^{2020}}{5^{2020}+2^{2018}+3^{2019}}=1\)
\(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\)
=>B<1
=>A>B
Ta có :
\(\dfrac{2017+2018}{2018+2019}=\dfrac{2017}{2018+2019}+\dfrac{2018}{2018+2019}\)
Ta thấy :
\(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019}\left(1\right)\)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019}\left(2\right)\)
từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}>\dfrac{2017+2018}{2018+2019}\)
Lời giải:
$A=1-\frac{1}{2019}+1-\frac{1}{2020}+1-\frac{1}{2021}+1+\frac{3}{2018}$
$=4+(\frac{1}{2018}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2020}+\frac{1}{2018}-\frac{1}{2021})$
$> 4+0+0+0+0=4$
Ta có: \(B=\dfrac{2017+2018+2019}{2018+2019+2020}=\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2019+2020}\)
Mà \(\dfrac{2017}{2018}>\dfrac{2017}{2018+2019+2020}\)
\(\dfrac{2018}{2019}>\dfrac{2018}{2018+2019+2020}\)
\(\dfrac{2019}{2020}>\dfrac{2019}{2018+2019+2020}\)
\(\Rightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}>\dfrac{2017}{2018+2019+2020}+\dfrac{2018}{2018+2019+2020}+\dfrac{2019}{2018+2919+2020}\)
\(\Rightarrow A>B.\)
Vậy \(A>B.\)
Lời giải:
Ta có:
\(A+1=\frac{2019^{2019}+2019^{2020}}{2019^{2019}-1}=\frac{2019^{2019}.2020}{2019^{2019}-1}\)
\(B+1=\frac{2019^{2019}+2019^{2018}}{2019^{2018}-1}=\frac{2019^{2018}.2020}{2019^{2018}-1}\) \(=\frac{2019^{2019}.2020}{2019^{2019}-2019}>\frac{2019^{2019}.2020}{2019^{2019}-1}\)
$\Rightarrow B+1>A+1$
$\Rightarrow B>A$
Lời giải:
\(9B=\frac{9^{2019}+9}{9^{2019}+1}=1+\frac{8}{9^{2019}+1}> 1+\frac{8}{9^{2020}+1}=\frac{9^{2020}+9}{9^{2020}+1}=9A\)
$\Rightarrow B>A$
Đặt \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)+\(\frac{2018}{2019}\)+\(\frac{2019}{2016}\) là A
A=1-\(\frac{1}{2017}\)+1-\(\frac{1}{2018}\)+1-\(\frac{1}{2019}\)+1+\(\frac{3}{2016}\)
A=4-(\(\frac{1}{2017}\)+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)-\(\frac{3}{2016}\)) Do \(\frac{1}{2017}\)+\(\frac{1}{2018}\)+\(\frac{1}{2019}\)-\(\frac{3}{2016}\)<0 =>A>4\(A=\dfrac{2020^{2018}-1}{2020^{2019}+2019}\)
\(B=\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)
Ta có :
\(A-B=\dfrac{2020^{2018}-1}{2020^{2019}+2019}-\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)
\(\Rightarrow A-B=\dfrac{\left(2020^{2018}-1\right)\left(2020^{2020}+2019\right)-\left(2020^{2019}+2019\right)\left(2020^{2019}+1\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
\(\Rightarrow A-B=\dfrac{2020^{4038}+2019.2020^{2018}-2020^{2020}-2019-2020^{4038}-2020^{2019}-2019.2020^{2018}-2029}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
\(\Rightarrow A-B=\dfrac{-\left(2020^{2020}+2020^{2019}+2.2019\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)
mà \(\left\{{}\begin{matrix}-\left(2020^{2020}+2020^{2019}+2.2019\right)< 0\\\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)>0\end{matrix}\right.\)
\(\Rightarrow A-B< 0\)
\(\Rightarrow A< B\)
Vậy ta được \(A< B\)
Ta có :
\(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)
\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)
\(=3-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)
\(\Leftrightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)