BT1: Tìm x, biết:
2) \(\dfrac{x+2017}{x+2018}=\dfrac{2020}{2021}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+2017}{x+2018}=\dfrac{2022}{2023}\)
\(\Leftrightarrow2023x+4080391=2022x+4080396\)
=>x=5
Ta có :
\(\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}=\left(1-\dfrac{1}{2018}\right)+\left(1-\dfrac{1}{2019}\right)+\left(1-\dfrac{1}{2020}\right)\)
\(=\left(1+1+1\right)-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)\)
\(=3-\left(\dfrac{1}{2018}+\dfrac{1}{2019}+\dfrac{1}{2020}\right)< 3\)
\(\Leftrightarrow\dfrac{2017}{2018}+\dfrac{2018}{2019}+\dfrac{2019}{2020}< 3\)
\(T=\dfrac{-2\left|x-2018\right|-2021}{2020+\left|x-2018\right|}\)
Để T lớn nhất thì \(2020+\left|x-2018\right|\) nhỏ nhất
Mà \(2020+\left|x-2018\right|\ge2020;\forall x\)
--> \(Min=2020\) khi \(x=2018\)
Khi đó \(T=\dfrac{-2\left|2018-2018\right|-2021}{2020+\left|0\right|}=\dfrac{-2.0-2021}{2020}=-\dfrac{2021}{2020}\)
--> \(Max_T=-\dfrac{2021}{2020}\) khi \(x=2018\)
P/s: hongg bt đúng hem nha:v
$T=\frac{-2|x-2018|-2021}{2020+|x-2018|}=\frac{-2(|x-2018|+2020)+2019}{2020+|x-2018|}=-2+\frac{2019}{2020+|x-2018|}$
Lại có $|x-2018| \ge 0$ nên
$T=-2+\frac{2019}{2020+|x-2018|} \le -2+\frac{2019}{2020}=-\frac{2021}{2020}$
Vậy $GTLN=-\frac{2021}{2020}$
Dấu $"="$ xảy ra khi và chỉ khi: $|x-2018|=0\Leftrightarrow x=2018$
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)
\(=>x+1=0\)
\(=>x=-1\)
b,
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)
\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)
\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)
\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)
\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)
Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)
\(=>x+2021=0\)
\(=>x=-2021\)
c,
\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)
\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)
\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)
\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)
Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)
\(=>x+329=0\)
\(=>x=-329\)
Ta có: \(\dfrac{x+1}{2017}+\dfrac{x+1}{2018}=\dfrac{x+1}{2019}+\dfrac{x+1}{2020}\)
\(\Rightarrow\left(\dfrac{x+1}{2017}+\dfrac{x+1}{2018}\right)-\left(\dfrac{x+1}{2019}+\dfrac{x+1}{2020}\right)=0\)
\(\Rightarrow\dfrac{x+1}{2017}+\dfrac{x+1}{2018}-\dfrac{x+1}{2019}-\dfrac{x+1}{2020}=0\)
\(\Rightarrow\left(x+1\right)\left(\dfrac{1}{2017}+\dfrac{1}{2018}-\dfrac{1}{2019}-\dfrac{1}{2020}\right)=0\)
Vì \(\dfrac{1}{2017}>\dfrac{1}{2018}>\dfrac{1}{2019}>\dfrac{1}{2020}>0\) nên
\(\dfrac{1}{2017}+\dfrac{1}{2018}-\dfrac{1}{2019}-\dfrac{1}{2020}>0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
\(\frac{x-1}{2020}+\frac{x-2}{2021}=\frac{x+1}{2018}+\frac{x+2}{2017}\)
\(\Leftrightarrow\frac{x-1}{2020}+1+\frac{x-2}{2021}-1=\frac{x+1}{2018}+1+\frac{x+2}{2017}+1\)
\(\Leftrightarrow\frac{x+2019}{2020}+\frac{x+2019}{2021}=\frac{x+2019}{2018}+\frac{x+2019}{2017}\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
mà \(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\ne0\)
\(\Leftrightarrow x+2019=0\)
\(\Leftrightarrow x=-2019\)
a) \(2\left(\dfrac{2}{3.5}+\dfrac{4}{5.9}+...+\dfrac{16}{n\left(n+16\right)}\right)=\dfrac{16}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{n}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{n+13}{3\left(n+16\right)}=\dfrac{8}{25}\)
\(24n+384=25n+325\)
\(25n-24n=384-325\)
\(n=59\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))
vậy x= 2023
\(\dfrac{x+2017}{x+2018}=\dfrac{2020}{2021}\)
\(\Leftrightarrow1-\dfrac{x+2017}{x+2018}=1-\dfrac{2020}{2021}\)
\(\Leftrightarrow\dfrac{x+2018}{x+2018}-\dfrac{x+2017}{x+2018}=\dfrac{2021}{2021}-\dfrac{2020}{2021}\)
\(\Leftrightarrow\dfrac{\left(x+2018\right)-\left(x+2017\right)}{x+2018}=\dfrac{2021-2020}{2021}\)
\(\Leftrightarrow\dfrac{x+2018-x-2017}{x+2018}=\dfrac{1}{2021}\)
\(\Leftrightarrow\dfrac{\left(2018-2017\right)+\left(x+x\right)}{x+2018}=\dfrac{1}{2021}\)
\(\Leftrightarrow\dfrac{1}{x+2018}=\dfrac{1}{2021}\)
\(\Leftrightarrow x+2018=2021\)
\(\Leftrightarrow x=3\left(tm\right)\)
vậy ....