K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

a, x2 - 2x + 3 > 0

Xét : VT = x2 - 2x + 1 + 2 = ( x - 1 )2 + 2 .

Có : ( x - 1 )2 \(\ge\) 0 với mọi x \(\Rightarrow\) ( x - 1 )2 + 2 > 0 với mọi x hay

VT > 0 .

Vậy BĐT x2 - 2x + 3 > 0 đúng .

Các câu còn lại tương tự .

Chúc bn học tốt !!!!!!!!hihi

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

12 tháng 9 2017

 a, x(x-1)(x+1)(x+2)=24 
[x(x+1)]*[(x-1)(x+2)]=24 
(x^2+x)*(x^2+x-2)=24 
đặt t=x^2+x;ta đc 
t*(t-2)=24 
t^2-2t=24 
t^2-2t+1=25 
(t-1)^2=5^2 
(t-1)^2-5^2=0 
((t-6)(t+4)=0 
t=6 hoặc t= -4 
với t=6 
thì x^2+x=6 <=> (x+1/2)^2 = 25/4 <=> (x+1/2)^2 = (5/2)^2 <=> (x+1/2)^2 - (5/2)^2 =0 
đến đây lại áp dụng HĐT thứ 3 giống như khi tìm t lúc nãy là ra 
với t= -4 em tự làm 
b, 2x(8x-1)^2 (4x-1)=9 <=> (8x-1)^2*(8x^2-2x)=9 
<=> (64x^2-16x+1)*(8x^2-2x)=9 
đặt t=(8x^2-2x) => 64x^2-16x =8t 
ta đc: (8t+1)*t=9 <=> 8t^2+t-9 = 0 <=> (t-1)(8t+9)=0 
c, (21/x^2-4x+10)- x^2+4x-6=0 <=> 21/x^2 - x^2 +4 =0 
đảt t=x^2 (t#0) 
ta đc: 21/t - t + 4 = 0 
quy đồng đc: 21-t^2+4t = 0 (với t # 0) 
<=> -(t-2)^2 + 25 =0 <=> 5^2 - (t-2)^2 = 0 
d, 2x^4-9x^3+14x^2-9x+2=0 
vế trái có tổng các hệ số (2-9+14-9+2)=0 nến có 1 nghiêm x=1 
nên phân tích đc nhân tử là (x-1) 
2x^4-9x^3+14x^2-9x+2=0 <=> (x-1)(2x^3-7x^2+7x-2)=0 
<=> x=1 và 2x^3-7x^2+7x-2=0 
PT: 2x^3-7x^2+7x-2=0 cũng có tổng các hệ số (2-7+7-2)=0 nên cũng có 1 nghiệm là 1 => vế trái có thể phân tích đc nhân tử (x-1) 
2x^3-7x^2+7x-2=0 <=> (x-1)(2x^2-5x+2)=0 
<=> x=1 và 2x^2-5x+2=0 
2x^2-5x+2=0 <=> x^2 - (5/2)x + 1 =0 
<=> (x-5/4)^2 - 9/16 = 0 
<=> (x-5/4)^2 - (3/4)^2 = 0

P/s: Thay bằng a,b,c, cho dễ hiểu nha. Tham khảo nhé   ♥ ♥ ♥

15 tháng 9 2017

.camon❤

27 tháng 8 2020

Bài 1.

a) ( 7x - 3 )2 - 5x( 9x + 2 ) - 4x2 = 18

<=> 49x2 - 42x + 9 - 45x2 - 10x - 4x2 = 18

<=> -52x + 9 = 18

<=> -52x = 9

<=> x = -9/52 

b) ( x - 7 )2 - 9( x + 4 )2 = 0

<=> x2 - 14x + 49 - 9( x2 + 8x + 16 ) = 0

<=> x2 - 14x + 49 - 9x2 - 72x - 144 = 0

<=> -8x2 - 86x - 95 = 0 

<=> -8x2 - 10x - 76x - 95 = 0

<=> -8x( x + 5/4 ) - 76( x + 5/4 ) = 0

<=> ( x + 5/4 )( -8x - 76 ) = 0

<=> \(\orbr{\begin{cases}x+\frac{5}{4}=0\\-8x-76=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=-\frac{19}{2}\end{cases}}\)

c) ( 2x + 1 )2 + ( 4x - 1 )( x + 5 ) = 36

<=> 4x2 + 4x + 1 + 4x2 + 19x - 5 = 36

<=> 8x2 + 23x - 4 - 36 = 0

<=> 8x2 + 23x - 40 = 0

=> Vô nghiệm ( lớp 8 chưa học nghiệm vô tỉ nghen ) :))

Bài 2.

a) x2 - 12x + 39 = ( x2 - 12x + 36 ) + 3 = ( x - 6 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

b) 17 - 8x + x2 = ( x2 - 8x + 16 ) + 1 = ( x - 4 )2 + 1 ≥ 1 > 0 ∀ x ( đpcm )

c) -x2 + 6x - 11 = -( x2 - 6x + 9 ) - 2 = -( x - 3 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

d) -x2 + 18x - 83 = -( x2 - 18x + 81 ) - 2 = -( x - 9 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

7 tháng 9 2016

a) Ta có: x+ 4x +5 = ( x2 + 4x + 4 ) +1 =  (x+2)2  + 1  >= 1 >0 với mọi x

b) Ta có : 4x- 4x +2 = ( 4x- 4x +1 ) + 1 = (2x+1) > 0 với mọi x

c) Ta có : x2 - 3x +4 = [x2 - 2.(3/2)x + (9/4) ]+ (7/4) = ( x - 3/2 )+ 7/4 >0 với mọi x 

mấy câu sau lm tương tự: sử dụng hằng đẳng thức tách thành dạng một bình phương cộng vs 1 số 

7 tháng 9 2016

a) x2 + 4x + 5 = x2 + 2 . 2x + 22 + 1 = (x + 2)2 + 1\(\ge\)1 > 0

b) 4x2 - 4x + 2 = (2x)2 - 2 . 2x + 1 + 1 = (2x - 1)2 + 1\(\ge\)1 > 0

c) x2 - 3x + 4 = x2 - 2 . 1,5x + 1,52 + 1,75 = (x - 1,5)2 + 1,75 \(\ge\)1,75  > 0

d) x2 - x + 1 = x2 + 2 . 0,5x + 0,52 + 0,75 = (x + 0,5)2 + 0,75\(\ge\)0,75  > 0

e) x2 - 5x + 7 = x2 - 2 . 2,5x + 2,52 + 0,75 = (x - 2,5)2 + 0,75\(\ge\)0,75  > 0

29 tháng 8 2017

Ta có : x2 + 2x + 2

= x2 + 2x + 1 + 1

= (x + 1)2 + 1 \(\ge1\forall x\)

Vậy  x2 + 2x + 2 \(>0\forall x\)

3 tháng 9 2018

Ta có : x2 + 2x + 2

=> x2 + 2x + 1 + 1

=> ( x + 1)2 + 1  >  1\(\forall x\)

Vậy x2 + 2x + 2   > \(0\forall x\)

6 tháng 7 2016

Bài 1:

a)-x^2+4x-5

=-(x2-4x+5)<0 với mọi x

=>-x^2+4x-5<0 với mọi x

b)x^4+3x^2+3

\(=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x

=>x^4+3x^2+3>0 với mọi x

c) bn xét từng th ra

Bài 2:

a)9x^2-6x-3=0

=>3(3x2-2x-1)=0

=>3x2-2x-1=0

=>3x2+x-3x-1=0

=>x(3x+1)-(3x+1)=0

=>(x-1)(3x+1)=0

b)x^3+9x^2+27x+19=0

=>(x+1)(x2+8x+19) (dùng pp nhẩm nghiệm rồi mò ra)

  • Với x+1=0 =>x=-1
  • Với x2+8x+19 =>vô nghiệm

c)x(x-5)(x+5)-(x+2)(x^2-2x+4)=3

=>x3-25x-x3-8=3

=>-25x-8=3

=>-25x=1

=>x=-11/25

6 tháng 7 2016

mk sửa 1 tí ở dấu => thứ 2 từ dưới lên là

=>-25x=11