K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

Cám ơn bạn nhiều lắm yeu

21 tháng 4 2021

\(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\) (1)

Mà: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) 

Nên PT (1) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\)

=> a = b = c

\(P=\left(a-b\right)^{2020}+\left(b-c\right)^{2021}+\left(c-a\right)^{2022}\)

\(=\left(a-a\right)^{2020}+\left(b-b\right)^{2021}+\left(c-c\right)^{2022}\)

= 0

 

1 tháng 8 2023

a)  A=x^2+4x+4=(x+2)^2.

Giờ ta tính giá trị của đa thức A với x=98:

A=(98+2)^2=100^2=10000

b)  B=x^3+9x^2+27x+27=(x+3)^3.

Thế x=-103 => (-103+3)^3=-1000000

c) Tách C = a⋅b−a⋅c+2⋅c−2⋅b rồi kết hợp lại thành C=(a−2)⋅b+(2−a)⋅c.

Thế a,b,c vào được vậy 

C=(2−2)⋅1.007+(2−2)⋅(−0.006) =0

d) Bài này khó quá mà tui nghĩ là đưa mấy cặp (2023^2-2022^2) thành dạng a^2-b^2=(a-b)(a+b) á

 

d: D=(2023^2-2022^2)+(2021^2-2020^2)+...+(3^2-2^2)+(1^2-0^2)

=2023+2022+...+3+2+1+0

=2023*2024/2=2047276

11 tháng 11 2021

\(a^{2019}+b^{2019}=a^{2020}+b^{2020}\\ \Leftrightarrow a^{2020}-a^{2019}=b^{2019}-b^{2020}=0\\ \Leftrightarrow a^{2019}\left(a-1\right)=b^{2019}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{1-b}{a-1}\left(1\right)\\ a^{2020}+b^{2020}=a^{2021}+b^{2021}\\ \Leftrightarrow a^{2021}-a^{2020}=b^{2020}-b^{2021}\\ \Leftrightarrow a^{2020}\left(a-1\right)=b^{2020}\left(1-b\right)\\ \Leftrightarrow\dfrac{a^{2020}}{b^{2020}}=\dfrac{1-b}{a-1}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\dfrac{a^{2019}}{b^{2019}}=\dfrac{a^{2020}}{b^{2020}}\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow a=b\\ \Leftrightarrow2a^{2019}=2a^{2020}\\ \Leftrightarrow a=1=b\\ \Leftrightarrow P=2022-\left(1+1-1\right)^{2022}=2021\)

11 tháng 11 2021

ghê wa b ưi, nhma mình hông hỉu j hết

hiha

Câu 1:Giá trị của biểu thức : A = 5 - 2 + 3 - 4 +5 - 6 +...+2021 - 2022 + 2023 là:A.2021                B. 2022                C.1016          D.1006Câu 2:Hình tam giác ABC đều có:A. AB = BC = CA                             C. AB < BC < CAB. AB > BC > CA                             D. Độ dài AB,BC,CA khác nhauCâu 3:Tập hợp A các số tự nhiên bao gồm các phần lớn hơn 5 và không vượt quá 8 là:A. A ={6;7}          B. A ={6;7;8}           C. A ={5;6;7;8}         D. A...
Đọc tiếp

Câu 1:Giá trị của biểu thức : A = 5 - 2 + 3 - 4 +5 - 6 +...+2021 - 2022 + 2023 là:
A.2021                B. 2022                C.1016          D.1006
Câu 2:Hình tam giác ABC đều có:
A. AB = BC = CA                             C. AB < BC < CA
B. AB > BC > CA                             D. Độ dài AB,BC,CA khác nhau
Câu 3:Tập hợp A các số tự nhiên bao gồm các phần lớn hơn 5 và không vượt quá 8 là:
A. A ={6;7}          B. A ={6;7;8}           C. A ={5;6;7;8}         D. A ={7;8}
Câu 4:
Hình ảnh không có chú thích
Câu 5:Tìm tổng tất cả số nguyên x,biết:-4 < x < 3
A.-3                   B.0                  C.1                 D.-1
Câu 6:Cho tập hợp M = { 1;5;a;b } Trong các khẳng định sau,khẳng định sai là
A. 1 ∈ M                    B. c ∉ M                  C. a ∈ M              D. b ∉ M
 

4

Câu 2: A

Câu 3: B

Câu 4: D

Câu 5: A

Câu 6: D

5 tháng 1 2022

1c

2a

3b

4c

5a

6d

30 tháng 6 2019

Nhầm là, tính A=(a-1)2019+(b2-1)2020+(c3-1)2021

Ta có : \(a+b+c=3\Rightarrow\left(a+b+c\right)^2=9\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)=9-2\times6=3\)

\(\Rightarrow a^2+b^2+c^2=ab+bc+ca\)

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\)

Mà \(a+b+c=3\Rightarrow a=b=c=1\)

\(\Rightarrow A=\left(1-1\right)^{2019}+\left(1^2-1\right)^{2020}+\left(1^3-1\right)^{2021}\)

\(=0^{2019}+0^{2020}+0^{2021}=0\)

17 tháng 5 2022

Bài này xuất hiện trong câu cuối đề GKI năm ngoái của mình :v

-Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{2020}=\dfrac{c}{2022}=\dfrac{a-c}{2020-2022}=\dfrac{a-c}{-2}\\\dfrac{a}{2020}=\dfrac{b}{2021}=\dfrac{a-b}{2020-2021}=\dfrac{a-b}{-1}\\\dfrac{c}{2022}=\dfrac{b}{2021}=\dfrac{c-b}{2022-2021}=c-b\end{matrix}\right.\)

\(\Rightarrow c-b=-\left(a-b\right)=\dfrac{a-c}{-2}\)

\(\Rightarrow\left\{{}\begin{matrix}a-c=-2\left(c-b\right)\\a-b=-\left(c-b\right)\end{matrix}\right.\)

\(\left(a-c\right)^3+8\left(a-b\right)^2.\left(c-b\right)=\left[-2\left(c-b\right)\right]^3+8\left[-\left(c-b\right)\right]^2.\left(c-b\right)=-8\left(c-b\right)^3+8\left(c-b\right)^3=0\left(đpcm\right)\)

a^2+b^2+c^2=ab+bc+ac

=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

=>a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0

=>(a-b)^2+(b-c)^2+(a-c)^2=0

=>a=b=c

\(T=\dfrac{a^{2022}+a^{2022}+a^{2022}}{\left(3a\right)^{2022}}=\dfrac{3}{3^{2022}}=\dfrac{1}{3^{2021}}\)