*) a,Cho các số a,b,c,d khác 0. TínhT=\(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)Biết x,y,z,t thỏa mãn: \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}\)=\(\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)b,Tìm sốtự nhiên M nhỏ nhất có 4 chữ số sao cho:M = a+b=c+d=e+fBiết a,b,c,d,e,f \(\in\) N* và \(\dfrac{a}{b}=\dfrac{14}{22};\dfrac{c}{d}=\dfrac{11}{13};\dfrac{e}{f}=\dfrac{17}{13}\)c, Cho 3 số a,b,c thỏa...
Đọc tiếp
*) a,Cho các số a,b,c,d khác 0. Tính
T=\(x^{2011}+y^{2011}+z^{2011}+t^{2011}\)
Biết x,y,z,t thỏa mãn: \(\dfrac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}\)=\(\dfrac{x^{2010}}{a^2}+\dfrac{y^{2010}}{b^2}+\dfrac{z^{2010}}{c^2}+\dfrac{t^{2010}}{d^2}\)
b,Tìm sốtự nhiên M nhỏ nhất có 4 chữ số sao cho:
M = a+b=c+d=e+f
Biết a,b,c,d,e,f \(\in\) N* và \(\dfrac{a}{b}=\dfrac{14}{22};\dfrac{c}{d}=\dfrac{11}{13};\dfrac{e}{f}=\dfrac{17}{13}\)
c, Cho 3 số a,b,c thỏa mãn:\(\dfrac{a}{2009}=\dfrac{b}{2010}=\dfrac{c}{2011}\)
Tính giá trị của biểu thức M = 4(a - b)(b - c) - (c - a)\(^2\)
3,
\(M=\dfrac{\dfrac{4}{237}-\dfrac{4}{2371}+\dfrac{4}{23711}}{\dfrac{-5}{237}+\dfrac{5}{2371}-\dfrac{5}{23711}}=\dfrac{\left(-4\right)\cdot\left(\dfrac{-1}{237}+\dfrac{1}{2371}-\dfrac{1}{23711}\right)}{5\cdot\left(\dfrac{-1}{237}+\dfrac{1}{2371}-\dfrac{1}{23711}\right)}=\dfrac{-4}{5}\)
Vậy \(M=\dfrac{-4}{5}\)
2,
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2011}=\dfrac{2011}{a}=\dfrac{a+b+c+2011}{b+c+2011+a}=\dfrac{a+b+c+2011}{a+b+c+2011}=1\)
\(\dfrac{a}{b}=1\Rightarrow a=b\left(1\right)\\ \dfrac{b}{c}=1\Rightarrow b=c\left(2\right)\)
Từ (1) và (2) ta có: \(a=c\)
\(\Rightarrow a+b-c=a+a-a=a\)
1)
b)
\(A=27^{20}+3^{61}+9^{31}\\ =\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\\ =3^{60}+3^{61}+3^{62}\\ =3^{60}\cdot\left(1+3+3^2\right)\\ =3^{60}\cdot\left(1+3+9\right)\\ =3^{60}\cdot13⋮13\)
Vậy \(A⋮13\)
a,
\(\left(-99\right)^{20}=\left(-99\right)^{2\cdot10}=\left[\left(-99\right)^2\right]^{10}=9801^{10}\\ 9999^{100}=\left(9999^{10}\right)^{10}>\left(9999^{10}\right)^1=9999^{10}\)
Vì \(9801^{10}< 9999^{10}< \left(9999^{10}\right)^{10}=9999^{100}\Rightarrow\left(-99\right)^{20}< 9999^{100}\)
Vậy \(\left(-99\right)^{20}< 9999^{100}\)
1/
a) (-99)20 = 9920
Vì 99 < 9999
20 < 100
Nên 9920 < 9999100
Vậy (-99)20 < 9999100
b) \(A=27^{20}+3^{61}+9^{31}\)
\(=\left(3^3\right)^{20}+3^{61}+\left(3^2\right)^{31}\)
\(=3^{60}+3^{61}+3^{62}\)
\(=3^{60}\left(1+3+3^2\right)\)
\(=3^{60}.13⋮13\)
Vậy A chia hết cho 13.
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2011}=\dfrac{2011}{a}=\dfrac{a+b+c+2011}{b+c+2011+a}=1\)
\(\Rightarrow\dfrac{a}{b}=1;\dfrac{b}{c}=1\Rightarrow a=b=c\) (*)
Thay (*) vào a + b - c: a + a - a = a
Vậy a + b - c = a.
3. \(M=\dfrac{\dfrac{4}{237}-\dfrac{4}{2371}+\dfrac{4}{23711}}{-\dfrac{5}{237}+\dfrac{5}{2371}-\dfrac{5}{23711}}\)
\(=\dfrac{4\left(\dfrac{1}{237}-\dfrac{1}{2371}+\dfrac{1}{23711}\right)}{-5\left(\dfrac{1}{237}-\dfrac{1}{2371}+\dfrac{1}{23711}\right)}\)
\(=-\dfrac{4}{5}\)