K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

Lấy G là trọng tâm của ΔABC 

⇒CG=2/3CD

Vẽ đường cao AH của ΔABC , vì ΔABC  cân tại A ⇒AH vừa là đường cao vừa là trung tuyến
⇒  A,G,H thẳng hàng.(1)
OB=OC=R ⇒ O thuộc đường trung trực của BC

⇒A,O,H thẳng hàng (2)

Từ (1) và(2) ⇒ OG vuông góc với BC

Lấy M là trung điểm của AC. ΔABC có D,M lần lượt là trung điểm của AB,AC

⇒DM//BC

Mà OGvuông góc với BC 

⇒OG vuông góc với DM

⇒OG vuông góc với DE (3)

ΔAOB có OA=OB

⇒ΔAOB cân tại O mà D là trung điểm của AB

⇒OD vuông góc với AB 

Gọi N là trung điểm của AD. Vì E là trọng tâm của ΔACD

⇒CE=2/3CN

ΔCND có CE=2/3CN,CG=2/3CD

⇒GE//DN ( theo định lý Ta lét)

⇒GE//AB mà OD vuông góc với AB

⇒OD vuông góc với GE (4)

Từ (3),(4) ⇒ΔDGE có OD vuông góc với GE, OG vuông góc DE

⇒O là trực tâm của ΔDGE

⇒OE vuông góc với DG hay OE vuông góc với CD

10 tháng 1 2016

Lấy G là trọng tâm của ΔABC 

⇒CG=23CD

Vẽ đường cao AH của ΔABC , vì ΔABC  cân tại A ⇒AH vừa là đường cao vừa là trung tuyến
⇒  A,G,H thẳng hàng.(1)
OB=OC=R ⇒ O thuộc đường trung trực của BC

⇒A,O,H thẳng hàng (2)

Từ (1) và(2) ⇒ OG vuông góc với BC

Lấy M là trung điểm của AC. ΔABC có D,M lần lượt là trung điểm của AB,AC

⇒DM//BC

Mà OGvuông góc với BC 

⇒OG vuông góc với DM

⇒OG vuông góc với DE (3)

ΔAOB có OA=OB

⇒ΔAOB cân tại O mà D là trung điểm của AB

⇒OD vuông góc với AB 

Gọi N là trung điểm của AD. Vì E là trọng tâm của ΔACD

⇒CE=23CN

ΔCND có CE=23CN,CG=23CD

⇒GE//DN ( theo định lý Ta lét)

⇒GE//AB mà OD vuông góc với AB

⇒OD vuông góc với GE (4)

Từ (3),(4) ⇒ΔDGE có OD vuông góc với GE, OG vuông góc DE

⇒O là trực tâm của ΔDGE

⇒OE vuông góc với DG hay OE vuông góc với CD

28 tháng 9 2015

BCADMGEO

Gọi; M là trung điểm của AC;  G là trọng tâm của tam giác ABC. Nối E với G; O với D

+) Vì G là trong tâm của tam giác ABC => MG = \(\frac{1}{3}\)MB => MG/ MB = \(\frac{1}{3}\)

E là trong tâm của tam giác ACD => ME = \(\frac{1}{3}\) MD => ME/ MD = \(\frac{1}{3}\)

Tam giác DMB có MG/ MB = ME/MD (= \(\frac{1}{3}\)) => EG // AB (Định lí Ta lét)

Vì O là tâm đường tròn ngoại tiếp tam giác ABC => O là giao của 3 đường trung trực => OD là đường trung trực của AB => OD vuông góc với AB 

=> EG vuông góc với OD (1)

+) Tam giác ABC cân tại A có AO là đường trung trực nên đông thời là đường trung tuyến

Mà AG cũng là đường trung tuyến (Vì G là trọng tâm tam giác) => AO trùng với AG => A; O; G thẳng hàng

Mặt khác AO vuông góc với BC ( vì AO là đường trung trực của đoạn BC)

DM // BC (vì DM là đường trung bình của tam giác ABC) 

=> AO vuông góc với BC => OG vuông góc với BC   (2)

Từ (1)(2) ta có: OD; OG là hai đường cao của tam giác DEG mà OD cắt OG = O => O là trực tâm của tam giác DEG 
=> OE vuông góc với DG 

Hay OE vuông góc với DC

27 tháng 9 2015

khó chứng minh quá đi

A B C H K E O

tớ nghĩ câu này cm E nằm trên đường kính HK là ra nhưng cm ra s thì chả bk ^^

30 tháng 1 2018

2). Từ AD là phân giác  B A C ^  suy ra DB=DC vậy DE vuông góc với BC tại trung điểm N của BC.

Từ 1). Δ B D M ∽ Δ B C F , ta có  D M C F = B D B C .

Vậy ta có biến đổi sau D A C F = 2 D M C F = 2 B D B C = C D C N = D E C E  (3).

 

Ta lại có góc nội tiếp  A D E ^ = F C E ^  (4).

Từ 3 và 4, suy ra Δ E A D ∽ Δ E F C ⇒ E F C ^ = E A D ^ = 90 ° ⇒ E F ⊥ A C  

16 tháng 10 2017

Bn xem bài của cô Trần Thị Loan nha

Link nè bn

Câu hỏi của Trần Đức Thắng - Toán lớp 9 - Học toán với OnlineMath

16 tháng 10 2017
OK. Đã xem! Tks
9 tháng 9 2018

1). Ta có góc nội tiếp bằng nhau  B D M ^ = B C F ^   ( 1 ) và  B M A ^ = B F A ^    suy ra  180 0 − B M A ^ = 180 0 − B F A ^  hay  B M D ^ = B F C ^  (2).

Từ (1) và (2), suy ra  Δ B D M ~ Δ B C F   (g - g).

30 tháng 4 2020

hình tự vẽ nha. lười quá

Kẻ trung tuyến CM,DN của \(\Delta ACD\)( M,N \(\in\)AB,AC )

AM và DN cắt nhau ở E. gọi Giao điểm của CD và AO là I

dễ dàng suy ra I là trọng tâm của \(\Delta ABC\)

Ta có : \(\frac{CE}{CM}=\frac{CI}{CD}=\frac{2}{3}\Rightarrow EI//AB\)

Mà \(OD\perp AB\)nên \(EI\perp OD\)( 1 )

Lại có : \(OI\perp BC\)mà BC // DN nên \(OI\perp DN\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra I là trực tâm của \(\Delta ODE\), do đó OE \(\perp\)DI 

Hay \(OE\perp CD\)