CMR: Nếu đoạn thẳng nối các trung điểm của cặp cạnh đối diện 1 tứ giác bằng nửa tổng 2 cạnh kia thì tứ giác đó là hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ đó lần lược chứng minh đoạn thẳng ấy song song với từng đáy
gọi G là trung điểm AC ta có
#1: AB//CD thì \(EF=\dfrac{AB+CD}{2}\)
#2: AB không // với CD thì EF<EG+GFnên \(EF< \dfrac{AB+CD}{2}\)
từ đó suy ra đpcm
Gọi M. N, P và Q theo thứ tự là trung điểm các cạnh AB, CD, BC và DA của tứ giác lồi ABCD
Khi đó :
\(\overrightarrow{MN}=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{BC}\right)\) và \(\overrightarrow{PQ}=\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{CD}\right)\)
Ta có : \(\left|\overrightarrow{MN}\right|+\left|\overrightarrow{PQ}\right|=\frac{1}{2}\left(\left|\overrightarrow{AD}+\overrightarrow{BC}\right|+\left|\overrightarrow{BA}+\overrightarrow{CD}\right|\right)\)
\(\le\frac{1}{2}\left(\left|\overrightarrow{AD}\right|+\left|\overrightarrow{BC}\right|+\left|\overrightarrow{BA}\right|+\left|\overrightarrow{CD}\right|\right)\)
Dấu đẳng thức xảy ra khi và chỉ khi \(\overrightarrow{AD}\uparrow\uparrow\overrightarrow{BC}\) và \(\overrightarrow{BA}\uparrow\uparrow\overrightarrow{CD}\)
Suy ra điều cần chứng minh
gọi G là trung điểm AC ta có
#1: AB//CD thì \(EF=\dfrac{AB+CD}{2}\)
#2: AB không // với CD thì EF<EG+GFnên \(EF< \dfrac{AB+CD}{2}\)
từ đó suy ra đpcm