cho tam giác ABC có BM, CN là 2 trung tuyến cắt nhau tại G, gọi I , K lần lượt là trung điểm của BG, CG. Chứng minh MN // IK và MN=IK( 3 cách )
Mọi người giải giúp vs ạ! cần gấp, thanks.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình
=>NM//BC và NM=BC/2(1)
Xét ΔGBC có
I là trung điểm của BG
K là trung điểm của CG
Do đó: IK là đường trung bình
=>IK//BC và IK=BC/2(2)
Từ (1) và (2) suy ra MN//IK và MN=IK
Cách 1: Sử dụng tính chất đường trung bình:
N là trung điểm của AB và M là trung điểm của AC => MN là đường trung bình của \(\Delta\)ABC.
=> MN//BC và MN=1/2BC (1)
I là trung điểm BG và K là trung điểm CG => IK là đường trung bình của \(\Delta\)BGC.
=> IK//BC và IK=1/2BC (2)
Từ (1); (2) => MN//IK và MN=IK (đpcm)
Cách 2: Chứng minh 2 tam giác bằng nhau:
G là trọng tâm của \(\Delta\)ABC => BG=2GM và CG=2GN.
Mả I là trung điểm của BG => BI=GI=GM
K là trung điểm của CG => CK=GK=GN
Xét \(\Delta\)IGK và \(\Delta\)MGN:
GI=GM
^IGK=^MGN => \(\Delta\)IGK=\(\Delta\)MGN (c.g.c)
GK=GN
=> MN=IK (2 cạnh tương ứng) và ^GIK=^GMN => MN//IK (So le trong)
Cách 3: Sử dụng tính chất đoạn chắn đảo:
Ta có: \(\Delta\)NIG=\(\Delta\)KMG (c.g.c) => ^NIG=^KMG (So le trong) => NI//KM.
Mả NI=KM (2 cạnh tương ứng) => MN//IK và MN=IK (đpcm)
xét tam giác BCG có I, K là trung điểm của BG, CG (gt)
=> IK là đường trung bình của tam giác
=> IK//BC và IK=1/2 BC (1)
xét tam giác ABC có M, N là trung điểm của AB, AC (đường trung tuyến)
=> MN là đường trung bình của tam giác
=> MN//BC và MN=1/2 BC (2)
từ (1) và (2) => MN//IK//BC và MN=IK=1/2BC
Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\)(1)
Xét ΔGBC có
E là trung điểm của GB(gt)
F là trung điểm của GC(gt)
Do đó: EF là đường trung bình của ΔGBC(Định nghĩa đường trung bình của tam giác)
Suy ra: EF//BC và \(EF=\dfrac{BC}{2}\)(2)
Từ (1) và (2) suy ra NM//EF và NM=EF
a: Xét ΔABC có
\(\dfrac{AN}{AB}=\dfrac{AM}{AC}\)
Do đó: MN//BC
Xét tứ giác BNMC có MN//BC
nên BNMC là hình thang
mà \(\widehat{NBC}=\widehat{MCB}\)
nên BMNC là hình thang cân
\(a,b,\) Ta có \(\left\{{}\begin{matrix}AN=BN\\AM=CM\end{matrix}\right.\Rightarrow MN\) là đtb \(\Delta ABC\Rightarrow MN//BC;MN=\dfrac{1}{2}BC\left(1\right)\)
Ta có \(\left\{{}\begin{matrix}BE=EG\\CG=GF\end{matrix}\right.\Rightarrow EF\) là đtb \(\Delta BGC\Rightarrow EF//BC;EF=\dfrac{1}{2}BC\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow EF=MN;EF//MN\)
\(c,d,\) Cmtt câu a,b, ta được \(NE,MF\) lần lượt là đtb \(\Delta AGB;\Delta AGC\)
\(\Rightarrow\left\{{}\begin{matrix}NE=\dfrac{1}{2}AG;NE//AG\\MF=\dfrac{1}{2}AG;MF//AG\end{matrix}\right.\Rightarrow NE=MF;NE//MF\)
Xét ΔBAC có
N là trung điểm của AB
M là trung điểm của AC
DO đó NM là đường trung bình
=>NM//BC và NM=BC/2(1)
Xét ΔGBC có
I là trung điểm của BG
K là trung điểm của CG
Do đó: IK là đường trung bình
=>IK//BC và IK=BC/2(2)
Từ(1) và (2) suy ra MN=IK và MN=IK