K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right)\)

\(=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)

\(=\left(1-\dfrac{1}{4}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)

\(=\left(1-\dfrac{1}{16}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)

...

\(=\left(1-\dfrac{1}{2^{2n}}\right)\left(1+\dfrac{1}{2^{2n}}\right).2=\left(1-\dfrac{1}{2^{4n}}\right).2=2-\dfrac{1}{2^{4n-1}}\)

Vậy ...

b,Sửa đề: \(\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right)\)

Ta có:\(\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right)\)

\(=\left(10-1\right).\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)

\(=\left(10^2-1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)

\(=\left(10^4-1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)

...

\(=\left(10^{2n}-1\right)\left(10^{2n}+1\right).\dfrac{1}{9}=\left(10^{4n}-1\right).\dfrac{1}{9}=\dfrac{10^{4n}}{9}-\dfrac{1}{9}\)

Vậy ...

áp dụng hằng đẳng thức (a+b)(a-b)=a^2-b^2 Minh Hoang Hai

Chọn B

NV
22 tháng 4 2022

\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)

\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)

\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)

\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)

\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)

26 tháng 11 2021

\(B=\left(\dfrac{a-b}{a^2+ab}-\dfrac{a}{b^2+ab}\right):\left(\dfrac{b^3}{a^3-ab^2}+\dfrac{1}{a+b}\right)\)

    \(=\left(\dfrac{a-b}{a\left(a+b\right)}-\dfrac{a}{b\left(a+b\right)}\right):\left(\dfrac{b^3}{a\left(a-b\right)\left(a+b\right)}+\dfrac{1}{a+b}\right)\)

    \(=\dfrac{b\left(a-b\right)-a^2}{ab\left(a+b\right)}:\dfrac{b^3+a\left(a-b\right)}{a\left(a-b\right)\left(a+b\right)}\)

    \(=\dfrac{ab-b^2-a^2}{ab\left(a+b\right)}\cdot\dfrac{a\left(a-b\right)\left(a+b\right)}{a^2-ab+b^3}\)

    \(=\dfrac{\left(a-b\right)\left(ab-b^2-a^2\right)}{b\left(a^2-ab+b^3\right)}\)

    \(=\dfrac{-\left(a-b\right)\left(a^2-ab+b^2\right)}{b\left(a^2-ab+b^3\right)}\)

Đề lỗi rồi chứ mình ko rút gọn đc nữa

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

j.

\(J=\left[\frac{1}{\sqrt{(\sqrt{5}-\sqrt{2})^2}}-\frac{\sqrt{2}}{\sqrt{2}(\sqrt{5}+\sqrt{2})}+1\right].\frac{1}{(\sqrt{2}+1)^2}\)

\(=\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right).\frac{1}{(\sqrt{2}+1)^2}\)

\(=[\frac{\sqrt{5}+\sqrt{2}-(\sqrt{5}-\sqrt{2})}{(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})}+1].\frac{1}{(\sqrt{2}+1)^2}=(\frac{2\sqrt{2}}{3}+1).\frac{1}{(\sqrt{2}+1)^2}=\frac{3+2\sqrt{2}}{3}.\frac{1}{3+2\sqrt{2}}=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

k. Đề sai sai, bạn xem lại

o.

\(O=(4+\sqrt{15})(\sqrt{5}-\sqrt{3}).\sqrt{2}.\sqrt{4-\sqrt{15}}\)

\(=(4+\sqrt{15}(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})=(4+\sqrt{15})(8-2\sqrt{15})\)

\(=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)

 

a: \(P=\left(\dfrac{3x+6}{2\left(x^2+4\right)}-\dfrac{2x^2-x-10}{\left(x+1\right)\left(x^2+1\right)}\right):\left(\dfrac{10\left(x^2-1\right)+3\left(x^2+1\right)\left(x-1\right)-6\left(x+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\cdot2}\right)\cdot\dfrac{2}{x-1}\)

\(=\left(\dfrac{\left(3x+6\right)\left(x^3+x^2+x+1\right)-\left(2x^2+8\right)\left(2x^2-x-10\right)}{2\left(x^2+4\right)\left(x+1\right)\left(x^2+1\right)}\right)\cdot\dfrac{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)\cdot2}{-3x^3+x^2-3x-13}\cdot\dfrac{2}{x-1}\)

\(=\dfrac{-x^4+11x^3+13x^2+17x+16}{\left(x^2+4\right)}\cdot\dfrac{2}{-3x^3+x^2-3x-13}\)

4 tháng 10 2021

\(N=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{100}\)

\(\Rightarrow2N=2+1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow N=2N-N=2+1+\dfrac{1}{2}+...+\left(\dfrac{1}{2}\right)^{99}-1-\dfrac{1}{2}-...-\left(\dfrac{1}{2}\right)^{100}=2-\left(\dfrac{1}{2}\right)^{100}\)

4 tháng 10 2021

\(N=1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\)

\(\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\)

\(\dfrac{1}{2}N-N=\left(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{101}\right)\)

               \(-\left(1+\left(\dfrac{1}{2}\right)+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\right)\)

\(-\dfrac{1}{2}N=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}-1\)

\(N=\dfrac{-\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^{101}}{-\dfrac{1}{2}}\)

NV
20 tháng 12 2020

\(B=\left(ab+bc+ca\right)\left(\dfrac{ab+bc+ca}{abc}\right)-abc\left(\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\right)\)

\(=\dfrac{\left(ab+bc+ca\right)^2-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)

\(=\dfrac{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)

\(=2\left(a+b+c\right)\)