cho 3 tỉ số bằng nhau
\(\dfrac{a}{b+c},\dfrac{b}{c+a},\dfrac{c}{a+b}\)
Hãy tính giá trị của mỗi thừa số đó
Giải cụ thể nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
\(\Rightarrow\dfrac{a}{b+c}+1=\dfrac{b}{a+c}+1=\dfrac{c}{a+b}+1\)
\(\Rightarrow\dfrac{a+b+c}{b+c}=\dfrac{a+b+c}{a+c}=\dfrac{a+b+c}{a+b}\)
\(\Rightarrow b+c=a+c=b+a\)
\(\Rightarrow a=b=c\)
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a}{a+a}=\dfrac{1}{2}\)
\(\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}\)
TH1: \(a+b+c+d=0\)
\(\Rightarrow\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{-c}{c}=-1\)
TH2: \(a+b+c+d\ne0\)
\(\Rightarrow\dfrac{a+b+c}{d}=\dfrac{b+c+d}{a}=\dfrac{c+d+a}{b}=\dfrac{d+a+b}{c}=\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
sửa lại đề bài nhé
tìm x ,biết
\(x=\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\)
+ nếu a+b+c=0
\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{c}{a+b}\\\dfrac{a}{b+c}\\\dfrac{b}{c+a}\end{matrix}\right.\Rightarrow x=-1\)
nếu a+b+c \(\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(x=\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
nếu nếu a+b+c \(\ne0\)
thì x=\(\dfrac{1}{2}\)
nếu nếu a+b+c =0
thì x= -1
x là giá trị của mỗi tỉ số nhé
\(\ne0\)\(\ne0\)
Ta có:
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
⇔ \(\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1\)
\(=\dfrac{a+b+c+2d}{d}-1\)
⇔ \(\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
Nếu a+b+c+d=0
⇒a+b=−(c+d);c+b=−(a+d);c+d=−(a+b);a+d=−(c+b)
Thay vào M, ta có:
\(M=\dfrac{a+b}{-\left(a+b\right)}=\dfrac{b+c}{-\left(b+c\right)}=\dfrac{c+d}{-\left(c+d\right)}=\dfrac{a+d}{-\left(a+d\right)}=-1\)
Nếu a+b+c+d ≠0
⇒ \(a=b=c=d\)
Thay vào M, ta có
\(M=\dfrac{a+b}{a+b}=\dfrac{b+c}{b+c}=\dfrac{c+d}{c+d}=\dfrac{d+a}{d+a}=1\)
Cho 3 tỉ số bằng nhau:
\(\dfrac{a}{b+c};\dfrac{b}{c+a};\dfrac{c}{a+b}\)
Tìm giá trị của mỗi tỉ số đó
+) Nếu \(a,b,c\ne0\) thì theo tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
+) Nếu \(a+b+c=0\)
\(\Leftrightarrow b+c=-a;c+a=-b;a+b=-c\)
\(\Leftrightarrow\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a}{-a}=\dfrac{b}{-b}=\dfrac{c}{-c}=-1\)
a+b+c=0\(\Rightarrow c=0-a-b\)
Thay vào tỉ số đầu tiên ta được
\(\dfrac{a}{b+c}=\dfrac{a}{b+0-a-b}=\dfrac{a}{-a}=-1\)
Mà \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)
\(\Rightarrow\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=-1\)
Chúc bạn học tốt
Theo đề ta có :
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}\)
Nếu \(a+b+c\ne0\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
Còn nếu \(a+b+c=0\)
\(\Leftrightarrow b+c=-a;c+a=-b;a+b=-c\)
\(\Leftrightarrow\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a}{-a}=\dfrac{b}{-b}=\dfrac{c}{-c}=-1\)