trong cuộc thi đấu bóng bàn của 1 trường có 28 người dự thi nếu mọi vận động viên đấu với nhau và 2 vận động viên chỉ được đấu 1 trận thì có tất cả bn trận đấu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2 vận động viên chỉ được đấu 1 trận nên số trận đấu là:
\(\frac{28.27}{2}\)= 378 (trận)
1) sl 9876543210
sb 1234567890
2) có 16 cách chọn người thứ nhất
15 cách chọn người thứ 2
có tất cả trận đấu là 16 x 15 = 240
nhưng 2 người 1 cặp thì tổ chức số trận là
240 : 2 = 120
3) lớp đó có số học sinh tham gia ngoại khóa toán và ngoại khóa văn là
( 25 + 30 ) - 50 = 5 hs
đáp số tự khi
Có 6 vận động viên cùng đấu ,còn vận động viên còn lại đấu 1 trong 6 người còn lại .Vậy là ai cũng có 1 trận.
Nếu như là 2 trận trở lên thì 1 người phải thi với 2 người trong số họ .
3,4 ,5,6 thì cũng vậy .
Do đó ,trong suốt thời gian thi đấu thì luôn tồn tai 2 vận động viên có số trận như nhau.
Giả sử dự định có n vận động viên tham dự giải (\(n>4\), \(n\in N\))
Ban đầu số trận đấu dự định là:
\(\dfrac{n\left(n-1\right)}{2}\)(trận)
Thực tế số trận đấu là:
\(\dfrac{\left(n-4\right)\left(n-5\right)}{2}\)(trận)
Theo bài ra, ta có số trận đấu dự định nhiều hơn số trận đấu thực tế 50 trận nên ta có phương trình:
\(\dfrac{n\left(n-1\right)}{2}-\dfrac{\left(n-4\right)\left(n-5\right)}{2}=50\)
\(\Leftrightarrow\dfrac{n^2-n}{2}-\dfrac{n^2-9n+20}{2}=50\)
\(\Leftrightarrow n^2-n-n^2+9n-20=100\)
\(\Leftrightarrow8n=120\Leftrightarrow n=15\left(tm\right)\)
Thực tế số vận động viên tham dự giải này là:
\(n-4=15-4=11\)
Vậy : Thực tế có 11 vận động viên tham dự giải.
Vì 2 vận động viên chỉ được đấu 1 trận nên số trận đấu là:
\(\frac{28.27}{2}\)= 378 (trận)
Vì 2 vân động viên chỉ đấu được 1 trận nên số trận đấu là :
\(\dfrac{28.27}{2}=378\) (trận)
Đáp số : 278 trận