tìm biểu thức ngắn gọn hơn cho tích sau đây :
P \(=\left(1-\dfrac{4}{1}\right)\left(1-\dfrac{4}{9}\right)\left(1-\dfrac{4}{25}\right)....\left(1-\dfrac{4}{\left(2n-1\right)^2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(0,5-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right):\left(-2\right)\)
\(=\left(-\dfrac{1}{2}-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right).\left(-\dfrac{1}{2}\right)\)
\(=\left(\dfrac{-5-6}{10}\right):\left(-3\right)+\dfrac{1}{3}-\dfrac{1}{12}\)
\(=-\dfrac{11}{10}:\left(-3\right)+\dfrac{1}{4}\)
\(=-\dfrac{11}{10}.\left(-\dfrac{1}{3}\right)+\dfrac{1}{4}=\dfrac{11}{30}+\dfrac{1}{4}=\dfrac{37}{60}\)
Vậy \(P=\dfrac{37}{60}\)
\(Q=\left(\dfrac{2}{25}-1,008\right):\dfrac{4}{7}:\left[\left(3\dfrac{1}{4}-6\dfrac{5}{9}\right):2\dfrac{2}{17}\right]\)
\(=\left(\dfrac{2}{25}-\dfrac{126}{125}\right):\dfrac{4}{7}:\left[\left(\dfrac{13}{4}-\dfrac{59}{9}\right).\dfrac{36}{17}\right]\)
\(=-\dfrac{116}{125}.\dfrac{7}{4}:\left(-\dfrac{119}{36}.\dfrac{36}{17}\right)\)
\(=\dfrac{-29.7}{125}:\left(-7\right)=\dfrac{29}{125}\)
Vậy \(Q=\dfrac{29}{125}\)
A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)
= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)
= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)
= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)
= \(\dfrac{215}{1}=215\)
B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)
= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)
= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)
= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)
= \(\dfrac{300}{2}=150\)
a, \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right)\)
\(=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)
\(=\left(1-\dfrac{1}{4}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)
\(=\left(1-\dfrac{1}{16}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)
...
\(=\left(1-\dfrac{1}{2^{2n}}\right)\left(1+\dfrac{1}{2^{2n}}\right).2=\left(1-\dfrac{1}{2^{4n}}\right).2=2-\dfrac{1}{2^{4n-1}}\)
Vậy ...
b,Sửa đề: \(\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right)\)
Ta có:\(\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right)\)
\(=\left(10-1\right).\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)
\(=\left(10^2-1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)
\(=\left(10^4-1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)
...
\(=\left(10^{2n}-1\right)\left(10^{2n}+1\right).\dfrac{1}{9}=\left(10^{4n}-1\right).\dfrac{1}{9}=\dfrac{10^{4n}}{9}-\dfrac{1}{9}\)
Vậy ...
áp dụng hằng đẳng thức (a+b)(a-b)=a^2-b^2 Minh Hoang Hai
\(a,\left(7+3\dfrac{1}{4}-\dfrac{3}{5}\right)+\left(0,4-5\right)-\left(4\dfrac{1}{4}-1\right)\)
\(=\left(7+\dfrac{13}{4}-\dfrac{3}{5}\right)-\dfrac{23}{5}-\left(\dfrac{17}{4}-1\right)\)
\(=7+\dfrac{13}{4}-\dfrac{3}{5}-\dfrac{23}{5}-\dfrac{17}{4}+1\)
\(=\left(7+1\right)+\left(\dfrac{13}{4}-\dfrac{17}{4}\right)-\left(\dfrac{3}{5}+\dfrac{23}{5}\right)\)
\(=8-\dfrac{4}{4}-\dfrac{26}{5}\)
\(=7-\dfrac{26}{5}\)
\(=\dfrac{9}{5}\)
\(b,\dfrac{2}{3}-\left[\left(-\dfrac{7}{4}\right)-\left(\dfrac{1}{2}+\dfrac{3}{8}\right)\right]\)
\(=\dfrac{2}{3}-\left(-\dfrac{7}{4}-\dfrac{1}{2}-\dfrac{3}{8}\right)\)
\(=\dfrac{2}{3}-\left(-\dfrac{14}{8}-\dfrac{4}{8}-\dfrac{3}{8}\right)\)
\(=\dfrac{2}{3}-\left(-\dfrac{21}{8}\right)\)
\(=\dfrac{2}{3}+\dfrac{21}{8}\)
\(=\dfrac{79}{24}\)
\(c,\left(9-\dfrac{1}{2}-\dfrac{3}{4}\right):\left(7-\dfrac{1}{4}-\dfrac{5}{8}\right)\)
\(=\left(\dfrac{36}{4}-\dfrac{2}{4}-\dfrac{3}{4}\right):\left(\dfrac{56}{8}-\dfrac{2}{8}-\dfrac{5}{8}\right)\)
\(=\dfrac{31}{4}:\dfrac{49}{8}\)
\(=\dfrac{62}{49}\)
\(d,3-\dfrac{1-\dfrac{1}{7}}{1+\dfrac{1}{7}}=3-\dfrac{\dfrac{7}{7}-\dfrac{1}{7}}{\dfrac{7}{7}+\dfrac{1}{7}}=3-\left(\dfrac{6}{7}:\dfrac{8}{7}\right)=3-\dfrac{3}{4}=\dfrac{9}{4}\)
Bài 1:
a. $2x^3+3x^2-2x=2x(x^2+3x-2)=2x[(x^2-2x)+(x-2)]$
$=2x[x(x-2)+(x-2)]=2x(x-2)(x+1)$
b.
$(x+1)(x+2)(x+3)(x+4)-24$
$=[(x+1)(x+4)][(x+2)(x+3)]-24$
$=(x^2+5x+4)(x^2+5x+6)-24$
$=a(a+2)-24$ (đặt $x^2+5x+4=a$)
$=a^2+2a-24=(a^2-4a)+(6a-24)$
$=a(a-4)+6(a-4)=(a-4)(a+6)=(x^2+5x)(x^2+5x+10)$
$=x(x+5)(x^2+5x+10)$
Bài 2:
a. ĐKXĐ: $x\neq 3; 4$
\(A=\frac{2x+1-(x+3)(x-3)+(2x-1)(x-4)}{(x-3)(x-4)}\\ =\frac{2x+1-(x^2-9)+(2x^2-9x+4)}{(x-3)(x-4)}\\ =\frac{x^2-7x+14}{(x-3)(x-4)}\)
b. $x^2+20=9x$
$\Leftrightarrow x^2-9x+20=0$
$\Leftrightarrow (x-4)(x-5)=0$
$\Rightarrow x=5$ (do $x\neq 4$)
Khi đó: $A=\frac{5^2-7.5+14}{(5-4)(5-3)}=2$
đặt biểu thức đã cho là A
Ta có : \(a^4+\dfrac{1}{4}\) \(=a^4+a^2+\dfrac{1}{4}-a^2\)
\(=\left(a^2+\dfrac{1}{2}\right)^2-a^2\)
\(=\left(a^2+a+\dfrac{1}{2}\right)\left(a^2-a+\dfrac{1}{2}\right)\)
Thay vào biểu thức đã cho ta được:
\(\dfrac{\left(1^2+1+\dfrac{1}{2}\right)\left(1^2-1+\dfrac{1}{2}\right)\left(3^2+3+\dfrac{1}{2}\right)\left(3^2-3+\dfrac{1}{2}\right)...\left(29^2+29+\dfrac{1}{2}\right)\left(29^2-29+\dfrac{1}{2}\right)}{\left(2^2+2+\dfrac{1}{2}\right)\left(2^2-2+\dfrac{1}{2}\right)\left(4^2+4+\dfrac{1}{2}\right)\left(4^2-4+\dfrac{1}{2}\right)...\left(30^2+30+\dfrac{1}{2}\right)\left(30^2-30+\dfrac{1}{2}\right)}\)
Lại có :
\(\left(k+1\right)^2-\left(k+1\right)+\dfrac{1}{2}\) \(=k^2+2k+1-k-1+\dfrac{1}{2}\)
\(=k^2+k+\dfrac{1}{2}\)
\(\dfrac{\left(1^2+1+\dfrac{1}{2}\right)\left(1^2-1+\dfrac{1}{2}\right)\left(3^2+3+\dfrac{1}{2}\right)\left(2^2+2+\dfrac{1}{2}\right)...\left(29^2+29+\dfrac{1}{2}\right)\left(28^2+28+\dfrac{1}{2}\right)}{\left(2^2+2+\dfrac{1}{2}\right)\left(1^2+1+\dfrac{1}{2}\right)\left(4^2+4+\dfrac{1}{2}\right)\left(3^2+3+\dfrac{1}{2}\right)...\left(30^2+30+\dfrac{1}{2}\right)\left(29^2+29+\dfrac{1}{2}\right)}\)
= \(\dfrac{1^2-1+\dfrac{1}{2}}{30^2+30+\dfrac{1}{2}}\)
= \(\dfrac{\dfrac{1}{2}}{30^2+30+\dfrac{1}{2}}\)
A = \(\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(21^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(23^4+4\right)}\)
Xét: n4 + 4 = (n2+2)2 - 4n2 = (n2-2n+2)(n2+2n+2) = [(n-1)2+1][(x+1)2+1] nên: A = \(\dfrac{\left(0^2+1\right)\left(2^2+1\right)}{\left(2^2+1\right)\left(4^2+1\right)}.\dfrac{\left(4^2+1\right)\left(6^2+1\right)}{\left(6^2+1\right)\left(8^2+1\right)}.....\dfrac{\left(20^2+1\right)\left(22^2+1\right)}{\left(22^2+1\right)\left(24^2+1\right)}=\dfrac{1}{24^2+1}=\dfrac{1}{577}\)
B = \(\left(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{2}{n-2}+\dfrac{1}{n-1}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{n}\right)\)
Đặt C = \(\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)
= \(\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)
= \(n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)
= \(\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}\)
= \(n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\right)\)
Vậy ...