Xác định a, b, c biết \(2x^4+ax^2+bx+c\) chia hết cho (x - 2) còn chia \(\left(x^2-1\right)\) dư 2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\Rightarrow2b=2\Rightarrow b=1\)
Thay b=1 vào lần lượt (1) ,(2),(3) ta được:
\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ từng vế của (4) cho (5) ta được:
\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...
Đặt f(x) = \(2x^4+ax^2+bx+c\)
Áp dụng định lí Be - du ta có: r = f(x)
=> \(\left\{{}\begin{matrix}r=f\left(2\right)\\r=f\left(1\right)\\r=f\left(-1\right)\end{matrix}\right.\)
Thay x = 2; 1; -1 lần lượt vào f(x) ta được:
\(\left\{{}\begin{matrix}f\left(2\right)=32+4a+2b+c\\f\left(1\right)=2+a+b+c\\f\left(-1\right)=2+a-b+c\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}f\left(x\right)⋮\left(x-2\right)\\f\left(x\right)chia\left(x^2-1\right)dư2x\end{matrix}\right.\) => \(\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=2\\2+a-b+c=-2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=0\left(2\right)\\a-b+c=-4\left(3\right)\end{matrix}\right.\)
Trừ (2) cho (3) ta được: \(2b=4\) => b = 2
=> \(\left\{{}\begin{matrix}4a+c=-36\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ (4) cho (5) ta được: \(3a=-34\) => a = \(\dfrac{-34}{3}\) => c = \(\dfrac{28}{3}\)
Vậy a = \(\dfrac{-34}{3}\) ; b = 2 ; c = \(\dfrac{28}{3}\)
P/s: Hi vọng bn hiểu!
c.ơn bn nh`