K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=2\left[\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)\right]-3\left(x^4+y^4\right)\)

\(=2x^4-2x^2y^2+2y^4-3x^4-3y^4\)

\(=-\left(x^4+2x^2y^2+y^4\right)\)

\(=-\left(x^2+y^2\right)^2=-1\)

b: Bạn xem lại đề chỗ 3y^ nhé bạn

15 tháng 6 2017

Ta có:

\(x\left(x-a\right)\left(x+a\right)\left(x+2a\right)+a^4\)

\(\Leftrightarrow\) \(\left[x.\left(x+a\right)\right]\left[\left(x-a\right).\left(x+2a\right)\right]+a^4\)

\(\Leftrightarrow\) \(\left(x^2+ax\right)\left(x^2+ax-2a^2\right)+a^4\)

Đặt b = \(\left(x^2+ax\right)\)

Khi đó đa thức đã cho có dạng:

\(b\left(b-2a^2+a^4\right)\)

\(\Leftrightarrow\) \(b^2-2a^2b+a^4\)

\(\Leftrightarrow\) \(\left(b-a^2\right)^2\)

\(\Leftrightarrow\) \(\left(x^2+ax-a^2\right)^2\)

hay \(x\left(x-a\right)\left(x+a\right)\left(x+2a\right)+a^4\) là bình phương của 1 đa thức

15 tháng 6 2017

thanks bn bài có chút nhầm lẫn ha

19 tháng 7 2021

Trả lời:

Bài 4:

b, B =  ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 ) 

= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1 

= x8 - 1

Thay x = 2 vào biểu thức B, ta có:

28 - 1 = 255

c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 ) 

= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1

= x7 + 1

Thay x = 2 vào biểu thức C, ta có:

27 + 1 = 129

d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 ) 

= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x

= x

Thay x = - 5 vào biểu thức D, ta có:

D = - 5

Bài 5: 

a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )

= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4

= x4 - y4

Thay x = 2; y = - 1/2 vào biểu thức A, ta có:

A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16

b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 ) 

= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5 

= a5 + a4b - ab4 - b5

Thay a = 3; b = - 2 vào biểu thức B, ta có:

B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65

c, ( x2 - 2xy + 2y2 ) ( x+ y) + 2x3y - 3x2y+ 2xy3 

= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y+ 2xy3

= x4 + 2y4

Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:

( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16

16 tháng 8 2016

Mình làm một câu ví dụ thui nha

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\frac{5x}{50}=2\Rightarrow x=20\)

\(\frac{y}{6}=2\Rightarrow y=12\)

\(\frac{2z}{42}=2\Rightarrow x=42\)

mấy câu khác thì tương tự

tíc mình nha bạn

16 tháng 10 2016

a)\(\left(x+y\right)^2:\left(x+y\right)=x+y\)

b)\(\left(x-y\right)^5:\left(y-x\right)^4=\left(x-y\right)^5:\left(x-y\right)^4=x-y\)

c)\(\left(5x^4-3x^3+x^2\right):3x^2=\frac{5}{3}x^2-x+\frac{1}{3}^{ }\)

d)\(\left(x^3y^3-\frac{1}{2}x^2y^3+x^3y^2\right):\frac{1}{2}x^2y^2=2xy-y+x\)

15 tháng 10 2019

a) Ta có: 3x  = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)

           7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)

Vậy ...

b) Tương tự câu trên

c) Ta có:  \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)

Vậy ....

d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)

e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)

Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)

Nếu ko hiểu cứ hỏi t

22 tháng 11 2020

b,Sửa đề :  \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)

Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)

\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)

Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)

\(x=36,75;y=49;z=122,5\)

a: \(=-8x^5+6x^3-2\)

b: \(=-\dfrac{2}{3}x+7-x^2y\)

c: \(=\dfrac{7\left(x-y\right)^4+4\left(x-y\right)^3}{\left(x-y\right)^2}=7\left(x-y\right)^2+4\left(x-y\right)\)

d: \(=\dfrac{6\left(x-3y\right)^4}{5\left(x-3y\right)}=\dfrac{6}{5}\left(x-3y\right)^3\)

21 tháng 7 2018

\(\left(x+2\right)\left(x^2+2x-9\right)\)

\(=x^3+2x^2-9x+2x^2+4x-18\)

\(=x^3+4x^2-5x-18\)

\(\left(x^{2y}-6\right)\left(x^2-5\right)\)

\(=x^{4y}-5x^{2y}-6x^2+30\)

\(\left(x+y\right)\left(xy-4+y\right)\)

\(=x^2y-4x+xy+xy^2-4y+y^2\)

câu còn lại tương tự  nha