K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

\(x\left(....+3x+...\right)+x^2\left(.....-32\right)=......+3x^2-32x^2=-29x^2\)

15 tháng 6 2017

cm ơn rất nhìu

a: SHTQ là: \(C^k_{10}\cdot x^{10-k}\cdot\left(\dfrac{2}{x}\right)^k=C^k_{10}\cdot2^k\cdot x^{10-2k}\)

Số hạng ko chứa x tương ứng với 10-2k=0

=>k=5

=>SH đó là 8064

b: SHTQ là; \(C^k_6\cdot x^{6-k}\cdot\left(\dfrac{2}{x^2}\right)^k=C^k_6\cdot2^k\cdot x^{6-3k}\)

Số hạng ko chứa x tương ứng với 6-3k=0

=>k=2

=>Số hạng đó là 60

c: SHTQ là: \(C^k_5\cdot\left(3x^3\right)^{5-k}\cdot\left(-\dfrac{2}{x^2}\right)^k\)

\(=C^k_5\cdot3^{5-k}\cdot\left(-2\right)^k\cdot x^{15-5k}\)

SH chứa x^10 tương ứng với 15-5k=10

=>k=1

=>Hệ số là -810

27 tháng 8 2017

Hệ số của x5 trong khai triển x(1-2x)5 là (-2)4.C54

Hệ số của x5 trong khai triển x2(1+3x)10 là 33.C103

Do đó hệ số của x5 trong khai triển x(1-2x)5+ x2(1+3x)10 là

 

(-2)4.C54 + 33.C103= 3320

Chọn C

27 tháng 1 2017

1 tháng 3 2018

Đáp án C

Phương pháp:

Phân tích đa thức  1 + x + x 2 + x 3  thành nhân tử.

Sử dụng khai triển nhị thức Newton:

Áp dụng khai triển nhị thức Newton ta có:

 

NV
30 tháng 12 2020

\(\left(1+x\right)^6\left(1+x^2\right)^5=\sum\limits^6_{k=0}C_k^6x^k\sum\limits^5_{i=0}C_5^ix^{2i}=\sum\limits^6_{k=0}\sum\limits^5_{i=0}C_6^kC_5^ix^{2i+k}\)

Số hạng chứa \(x^7\Rightarrow\left\{{}\begin{matrix}0\le k\le6\\0\le i\le5\\2i+k=7\end{matrix}\right.\)

\(\Rightarrow\left(i;k\right)=\left(1;5\right);\left(2;3\right);\left(3;1\right)\)

Hệ số: \(C_5^1C_6^5+C_5^2C_6^3+C_5^3C_6^1=...\)

9 tháng 2 2017

Chọn đáp án A.

20 tháng 7 2018

2 tháng 12 2019

30 tháng 6 2017

Đáp án A

11 tháng 2 2017

Hệ số của x4 trong khai triển (1+2x)4 là 24 =16

Chọn D