Cho A= 102016 + 8. Chứng minh A⋮72
Giúp mình nhoa!!!! Mình sẽ tick cho người đó!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 4+2^2+2^3+....+2^2015
\(\Rightarrow\)2A=8+2^3+2^4+...+2^2016
\(\Rightarrow\) 2A-A=8+2^3+2^4+....+2^2016 - 4 - 2^2 - 2^3 -.....- 2^2015
\(\Rightarrow\)A=8+2^2016 - 4 - 2^2
\(\Rightarrow\)A=2^2016
Vậy A là lũy thừa của 2
a, 1000 chia hết cho 8 => 10^3 chia hết cho 8
=> 10^69.10^3 chia hết cho 8
và 8 chia hết cho 8
=> 10^72 + 8 chia hết cho 8
Ta có: 10^72 + 8= 100000....008
1+0+0+...+0+8= 9
=> 10^72 + 8 chia hết cho 9
a) Xét:
\(+p=2\Rightarrow3p+5=2.3 +5=11\left(TM\right)\)
+) \(p>2\). Do P là so nguyen to nen p lẻ \(\Rightarrow3p+5\)chan và \(3p+5>2\)\(\Rightarrow3p+5là\)hop so
Vay p=2
b) Xét:'
\(+p=2\Rightarrow p+8=10\left(ktm\right)\)
\(+p=3\Rightarrow p+8=11;p+10=13\left(TM\right)\)
\(+p>3\).Do p là so nguyen to nen \(p=3k+1;p=3k+2\left(k\inℕ^∗\right)\)
\(-p=3k+1\Rightarrow p+8=3\left(k+3\right)⋮3\left(loại\right)\)
\(-p=3k+2\Rightarrow p+10=3\left(k+4\right)⋮3\left(loại\right)\)
Vay p=3
a/ Xét p lẻ => 3p + 5 là số chẵn nên chia hết cho 2 mà 3p + 5 > 2 nên loại.
Xét p = 2 => 3.2 + 5 = 11 (nhận)
b/ Ta thấy 8 chia 3 dư 2; 10 chia 3 dư 1. Nên để đồng thời p + 8 và p + 10 là số nguyên tố thì p khi chia cho 3 không thể có số dư là 1 hoặc 2.
=> p = 3
a, A = 1010 + 56
A = \(\overline{100...0056}\) ( 8 chữ số 0)
56 ⋮ 4 ⇒ A ⋮ 4;
Xét tổng chữ số của số A ta có:
1 + 0 x 8 + 5 + 6 = 12 ⋮ 3 ⇒ A ⋮ 3
Vì 3; 4 là hai số nguyên tố cùng nhau nên A ⋮ 3.4 = 12 (đpcm)
Hình như bạn nhập sai đề bài rùi , thôi mik sửa theo cách mik thử
Nếu \(\left(\frac{1}{2}\right)^{2x}+1=\frac{1}{8}\)
Ta có: \(\left(\frac{1}{2}\right)^{2x}=-\frac{7}{8}\)
mà \(\left(\frac{1}{2}\right)^{2x}\ge0\forall x;-\frac{7}{8}< 0\)
\(\Rightarrow2x\in\varnothing\Rightarrow x\in\varnothing\)
A) Xét tam giác ABH và tam giác ADH có :
HB=HD ( giả thiết)
HA ( cạnh chung)
góc DHA=góc BHA=90độ
suy ra tam giác ABH=tam giác ADH ( C-G-C)
B)Xét tam giác EHD và tam giác BHAcó:
HE=HA( GT)
góc AHB=góc DHE(hai góc đối đỉnh )
HD=HB( GT)
vậy suy ra : tam giácBHA= tam giác EHD( C-G-C)
vậy BA=ED( hai cạnh tương ứng)
C)ta gọi giao điểm của ED và AC là I
ta có góc IEA = góc EAB( hai góc tương ứng)
mà hai góc này lại ở
vị trí sole trong ở hai đoạn thẳng BA và EI
suy ra : BAsong song với EI
mà ta lại có góc BAI = 90 độ mà lại bù nhau với góc EIA vậy góc EIA =180 độ - 90 độ =90 độ
vậy EI vuong góc với AC
A = ( 1 + 3 + 32 ) + 33( 1 + 3 + 32 ) + ... + 3117( 1 + 3 + 32 )
A = 13 + 33 . 13 + 36 . 13 + ... + 3117 . 13
A = 13 ( 1 + 33 + 36 + ... + 3117 ) chia hết cho 13 ( vì 13 chia hết cho 13 )
Vậy A chia hết cho 13
A = 7 + 72 + 73 + ... + 7119 + 7120
A = (71 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)
A = 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)
A = 7.57 + 74.57 + ... + 7118.57
A = 57(7 + 74 + ... + 7118)
Vì 57 ⋮ 57 nên 57(7 + 74 + ... + 7118) ⋮ 57
Ta có:
\(10^{2016}=1000........00\)(có 2016 số 0)
\(\Rightarrow10^{2016}+8=1000.....08\)(có 2015 số 0)
Vì \(10^{2016}+8⋮2\) (có tận cùng là 8);\(10^{2016}+8⋮9\)(do1+0+0+0+......+0+8=\(9⋮9\));\(10^{2016}+8⋮4\) (do\(08⋮4\))
=> \(10^{2016}+8⋮2.9.4\)
\(\Rightarrow10^{2016}+8⋮72\)
Vậy \(10^{2016}+8⋮72\) (đpcm)
Chúc bạn học tốt!!!
a, Ta có: \(A=10^{2016}+8=100...000+8\) ( 2016 số 0 )
\(=100...008\) ( 2015 số 0 )
Ta thấy \(008⋮8\Rightarrow A⋮8\)
Lại thấy tổng các chữ số bằng 9 nên \(A⋮9\)
Do \(\left(8;9\right)=1\)
\(\Rightarrow A⋮72\left(đpcm\right)\)
Vậy...