K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

2. Chứng tỏ:\(\dfrac{2}{5}< A< \dfrac{8}{9}.\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)

Giải:

Ta có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}.\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}.\)

\(A< 1+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{8}-\dfrac{1}{8}\right)-\dfrac{1}{9}.\)

\(A< 1+0+0+0+...+0-\dfrac{1}{9}.\)

\(A< 1-\dfrac{1}{9}.\)

\(A< \dfrac{8}{9}_{\left(1\right)}.\)

Ta lại có:

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}.\)

\(A=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}.\)

\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}.\)

\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}.\)

\(A>\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-\dfrac{1}{10}.\)

\(A>\dfrac{1}{2}+0+0+0+...+\dfrac{1}{10}.\)

\(A>\dfrac{1}{2}-\dfrac{1}{10}.\)

\(A>\dfrac{4}{10}.\)

\(\Rightarrow A>\dfrac{2}{5}_{\left(2\right)}.\) (vì \(\dfrac{4}{10}=\dfrac{2}{5}.\))

Từ \(_{\left(1\right)}\)\(_{\left(2\right)}\).

\(\Rightarrow A< \dfrac{8}{9}\)\(A>\dfrac{2}{5}.\)

\(\Rightarrow\) \(\dfrac{8}{9}>A>\dfrac{2}{5}\) hay \(\dfrac{2}{5}< A< \dfrac{8}{9}.\)

Vậy ta thu được \(đpcm.\)

~ Học tốt!!!... ~ ^ _ ^

23 tháng 5 2017

Câu 2 : Câu hỏi của Nguyễn Thu Hà - Toán lớp 6 | Học trực tuyến

a: =-21/36-3/36=-24/36=-2/3

b: =43/12*1/2+5/24=43/24+5/24=2

c: =8/9+1/9=1

e: =1-1/4+1/4-1/7+...+1/97-1/100

=1-1/100=99/100

28 tháng 3 2017

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\)

Xét: \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

.

.

.

\(\dfrac{1}{9^2}< \dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\Rightarrow A< \dfrac{8}{9}\)(1)

Xét: \(\dfrac{1}{2^2}>\dfrac{1}{2.3}\)

\(\dfrac{1}{3^2}>\dfrac{1}{3.4}\)

.

.

.

\(\dfrac{1}{9^2}>\dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\Rightarrow A>\dfrac{2}{5}\) (2)

Từ (1) và (2)

\(\Rightarrow\dfrac{8}{9}>A>\dfrac{2}{5}\left(đpcm\right)\)

18 tháng 9 2023

a) \(=\left(13\dfrac{2}{7}+2\dfrac{5}{7}\right):\left(-\dfrac{8}{9}\right)\)

\(=16:\dfrac{-8}{9}=\dfrac{-8\cdot\left(-2\right)\cdot9}{-8}=-18\)

b) 

\(=\left(\dfrac{-6}{11}\cdot\dfrac{11}{-6}\right)\cdot\dfrac{7\cdot10\cdot\left(-2\right)}{10}\)

\(=-14\)

c) \(=\dfrac{-1}{2}\cdot\dfrac{4}{3}\cdot\dfrac{-7}{2}\)

\(=\dfrac{-1\cdot2\cdot2\cdot\left(-7\right)}{2\cdot3\cdot2}=\dfrac{7}{3}\)

10 tháng 11 2023

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2\cdot2}< \dfrac{1}{1\cdot2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3\cdot3}< \dfrac{1}{2\cdot3}\)

\(\dfrac{1}{4^2}=\dfrac{1}{4\cdot4}< \dfrac{1}{3\cdot4}\)

...

\(\dfrac{1}{9^2}=\dfrac{1}{9\cdot9}< \dfrac{1}{8\cdot9}\)

\(\dfrac{1}{10^2}=\dfrac{1}{10\cdot10}< \dfrac{1}{9\cdot10}\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow A< 1-\dfrac{1}{10}\)

\(\Rightarrow A< \dfrac{9}{10}\)

\(\Rightarrow A< 1\) (vì: \(\dfrac{9}{10}< 1\))

10 tháng 11 2023

132=13⋅3<12⋅3

142=14⋅4<13⋅4

...

192=19⋅9<18⋅9

1102=110⋅10<19⋅10

⇒�=122+132+142+...+1102<11⋅2+12⋅3+13⋅4+...+19⋅10

⇒�<1−12+12−13+...+19−110

⇒�<1−110

⇒�<910

⇒�<1 (vì: 910<1)

 
24 tháng 11 2023

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)

=>\(A< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{8\cdot9}\)

=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}=1-\dfrac{1}{9}=\dfrac{8}{9}\)

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}\)

=>\(A>\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)

=>\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

=>\(A>\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{5}{10}-\dfrac{1}{10}=\dfrac{4}{10}=\dfrac{2}{5}\)

Do đó: \(\dfrac{2}{5}< A< \dfrac{8}{9}\)

\(a.\left[-\dfrac{6}{11}.\dfrac{11}{-6}\right].\dfrac{7}{10}.\left(-20\right)=1.7.\left(-2\right)=-14\)

\(b.\dfrac{-1}{2}:\dfrac{3}{4}.\dfrac{-7}{2}=\dfrac{7}{4}:\dfrac{3}{4}=\dfrac{7}{3}\)

\(c.\dfrac{93}{7}:-\dfrac{8}{9}+\dfrac{19}{7}:\dfrac{-8}{9}=\left(\dfrac{93}{7}+\dfrac{19}{7}\right):-\dfrac{8}{9}=\dfrac{-9}{8}.\dfrac{112}{7}=-18\)

1: 

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\)

...

\(\dfrac{1}{8^2}< \dfrac{1}{7\cdot8}\)

=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+..+\dfrac{1}{7\cdot8}\)

=>\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}=\dfrac{7}{8}< 1\)

16 tháng 6 2021

`A=(8 2/7-4 2/7)-3 4/9`

`=8+2/7-4-2/7-3-4/9`

`=4-3-4/9`

`=1-4/9=5/9`

`B=(10 2/9-6 2/9)+2 3/5`

`=10+2/9-6-2/9+2+3/5`

`=4+2+3/5`

`=6+3/5=33/5`

Bài 2:

`a)5 1/2*3 1/4`

`=11/2*13/4`

`=143/8`

`b)6 1/3:4 2/9`

`=19/3:38/9`

`=19/3*9/38=3/2`

`c)4 3/7*2`

`=31/7*2`

`=62/7`

Bài 1:

\(A=\left(8\dfrac{2}{7}-4\dfrac{2}{7}\right)-3\dfrac{4}{9}\) 

\(A=\left(\dfrac{58}{7}-\dfrac{30}{7}\right)-\dfrac{31}{9}\) 

\(A=4-\dfrac{31}{9}\) 

\(A=\dfrac{5}{9}\) 

 

\(B=\left(10\dfrac{2}{9}-6\dfrac{2}{9}\right)+2\dfrac{3}{5}\) 

\(B=\left(\dfrac{92}{9}-\dfrac{56}{9}\right)+\dfrac{13}{5}\) 

\(B=4+\dfrac{13}{5}\) 

\(B=\dfrac{33}{5}\)