Biến đổi vế trái thành vế phải :
a) \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\)
b) \(\left(a+b\right)\left(a-b\right)=a^2-b^2\)
Chú ý : "Biến đổi vế trái thành vế phải hoặc vế phải thành vế trái của một đẳng thức" là một cách chứng minh đẳng thức
a, \(a\left(b+c\right)-b\left(a-c\right)\)
\(=ab+ac-\left(ab-bc\right)\)
\(=ab+ac-ab+bc\)
\(=ac+bc\)
\(=\left(a+b\right)c\)
b,\(\left(a+b\right)\left(a-b\right)\)
\(=\left(aa+ab\right)-\left(ab+bb\right)\)
\(=aa+ab-ab-bb\)
\(=aa-bb\)
\(=a^2-b^2\)