K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2021

22/ \(\omega A=8\pi\)

\(A^2=x^2+\dfrac{v^2}{\omega^2}\Leftrightarrow A^2=3,2^2+\dfrac{\left(4,8\pi\right)^2}{\omega^2}\)

\(\Leftrightarrow\omega^2A^2=3,2^2\omega^2+23,04\pi^2\Leftrightarrow64\pi^2=3,2^2.\omega^2+23,04\pi^2\Leftrightarrow\omega=2\pi\left(rad/s\right)\)

\(\Rightarrow f=\dfrac{\omega}{2\pi}=\dfrac{2\pi}{2\pi}=1\left(Hz\right)\Rightarrow D.1Hz\)

23/ \(\omega A=20;\omega^2A=80\Rightarrow\left\{{}\begin{matrix}\omega=4\left(rad/s\right)\\A=5cm\end{matrix}\right.\)

\(\Rightarrow v=\omega\sqrt{A^2-x^2}=4.\sqrt{5^2-4^2}=12\left(cm/s\right)\Rightarrow A.12cm/s\)

20 tháng 10 2021
Là xem naruto
13 tháng 1 2022

hic cíu mng oi

 

a: ĐKXĐ: \(x\notin\left\{10;-10;\sqrt{10};-\sqrt{10}\right\}\)

b: \(A=\dfrac{5x^3+50x+2x^2+20+5x^3-50x-2x^2+20}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)

\(=\dfrac{10x^3+40}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)

25 tháng 9 2021

1.

\(pt\Leftrightarrow sin4x\left(sin5x+sin3x\right)=sin2x.sinx\)

\(\Leftrightarrow2sin^24x.cosx=sin2x.sinx\)

\(\Leftrightarrow2sin^24x.cosx=2sin^2x.cosx\)

\(\Leftrightarrow2cosx.\left(sin^24x-sin^2x\right)=0\)

\(\Leftrightarrow2cosx.\left(sin4x-sinx\right)\left(sin4x+sinx\right)=0\)

\(\Leftrightarrow8cosx.sin\dfrac{5x}{2}.cos\dfrac{3x}{2}.sin\dfrac{5x}{2}.cos\dfrac{3x}{2}=0\)

\(\Leftrightarrow8cosx.sin5x.sin3x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin5x=0\\sin3x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k\pi}{5}\\x=\dfrac{k\pi}{3}\end{matrix}\right.\)

25 tháng 9 2021

\(pt\Leftrightarrow sin8x+sin2x=sin16x+sin2x\)

\(\Leftrightarrow sin8x=2sin8x.cos8x\)

\(\Leftrightarrow sin8x\left(1-2cos8x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin8x=0\\cos8x=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}8x=k\pi\\8x=\pm\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{k\pi}{8}\\x=\pm\dfrac{\pi}{24}+\dfrac{k\pi}{4}\end{matrix}\right.\)

NV
12 tháng 7 2021

12.

\(y=\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)\le\sqrt[]{2}\)

\(\Rightarrow M=\sqrt{2}\)

13.

Pt có nghiệm khi:

\(5^2+m^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow2m\le24\)

\(\Rightarrow m\le12\)

NV
12 tháng 7 2021

14.

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=-\dfrac{5}{3}\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow x=k2\pi\)

15.

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(3\right)+k\pi\end{matrix}\right.\)

Đáp án A

16.

\(\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{6}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

\(\left[{}\begin{matrix}2\pi\le\dfrac{\pi}{3}+k2\pi\le2018\pi\\2\pi\le\pi+k2\pi\le2018\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le k\le1008\\1\le k\le1008\end{matrix}\right.\)

Có \(1008+1008=2016\) nghiệm

12 tháng 7 2021

Câu nào bạn, nếu mà cả thì đăng tách ra đi :)

12 tháng 7 2021

Ok bạn =))