So sánh các cạnh của tam giác ABC biết \(\widehat{A}=80^0,\widehat{C}=40^0\) ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC có = 800; = 450
Nên = 1800 – (800 + 450) = 550
(theo định lý tổng ba góc trong tam giác)
Vì 450 < 550 < 800 hay < < => AC < AB < BC
Ta có:
\(\widehat{A}>\widehat{B}=\widehat{C}\left(90^0>45^0=45^0\right)\)
`@` Theo định lý quan hệ giữa góc và cạnh đối diện
`->`\(\text{BC > AC = AB}\).
a) Theo đề bài ta có AB = 4cm, BC = 7cm, AC = 6cm
Có góc đối diện với cạnh AB là góc C, góc A đối diện với cạnh BC, góc B đối diện với cạnh AC
Theo định lí về góc đối diện với cạnh lớn hơn thì lớn hơn ta có :
\( \Rightarrow \widehat A > \widehat B > \widehat C\)
b)
Vì \(\widehat{A}=\widehat{C}\) nên tam giác ABC cân tại B
\( \Rightarrow BA = BC\)
Áp dụng định lí tổng 3 góc trong tam giác ABC, có:
\( \Rightarrow \widehat B = {180^o} - {100^0} = {80^o}\)
\( \Rightarrow \widehat B > \widehat A=\widehat C\)
\( \Rightarrow AC\) là cạnh lớn nhất tam giác ABC (Quan hệ giữa góc và cạnh đối diện trong tam giác)
\(\widehat{B}+\widehat{C}=140^0\)
\(\Leftrightarrow4\cdot\widehat{C}=140^0\)
\(\Leftrightarrow\widehat{C}=35^0\)
hay \(\widehat{B}=105^0\)
Vậy: ΔABC tù
a) Do \(\widehat{A}=100^0>90^0\) nên là góc tù, do đó, \(\widehat{A}\) là góc lớn nhất trong tam giác ABC.
\( \Rightarrow \) BC là cạnh lớn nhất của tam giác ABC (do BC đối diện với góc A trong tam giác ABC)
b)
Theo định lí tổng 3 góc trong tam giác ABC, ta có:
\( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)
\( \Rightarrow \widehat C = {180^o} - {100^o} - {40^o} = {40^o}\)
\( \Rightarrow\widehat C = \widehat B = {40^o}\)
\( \Rightarrow \) ABC là tam giác cân tại A.
a) Tam giác ABC có = 1000 , = 400
Cạnh lớn nhất của tam giác ABC là BC vì BC đối diện với góc A và góc = 1000 > 900 nên góc A là góc tù
b) Tam giác ABC là tam giác tù
Giải:
Ta có: \(\widehat{A}=80^0\)
\(\widehat{C}=40^0\)
\(\Leftrightarrow\widehat{B}=180^0-80^0-40^0=60^0\) (Tổng ba góc của một tam giác)
Suy ra: \(\widehat{A}>\widehat{B}>\widehat{C}\)
\(\Leftrightarrow BC>AC>AB\) (Tính chất giữa góc và cạnh đối diện)
Vậy ...
sachbaitap.com