Cho \(\Delta\)ABC vuông tại A,BD là phân giác của góc B,biết BD=\(6\sqrt{5}\)cm,AD=\(\frac{3}{5}\)CD,Tính BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A,ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên D là trung điểm của BC
hay BD=CD
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
c: Đặt AD/4=BD/3=k
=>AD=4k; BD=3k
Xét ΔADB vuông tại D có \(AB^2=AD^2+BD^2\)
\(\Leftrightarrow25k^2=100\)
=>k=2
=>AD=8(cm)
a) Xét tam giác ABC cân tại A:
AD là phân giác góc A (gt).
=> AD là trung tuyến (T/c tam giác cân).
=> D là trung điểm của BC.
=> BD = CD.
b) Xét tam giác ABC cân tại A:
AD là phân giác góc A (gt).
=> AD là đường cao (T/c tam giác cân).
=> AD vuông góc với BC.
c) Ta có: \(\dfrac{AD}{BD}=\dfrac{4}{3}.\Rightarrow BD=\dfrac{3}{4}AD.\)
Xét \(\Delta ADB\) vuông tại D:
\(AB^2=AD^2+BD^2\left(Pytago\right).\\ \Rightarrow AB^2=AD^2+\left(\dfrac{3}{4}AD\right)^2.\\ \Leftrightarrow AB^2=AD^2+\dfrac{9}{16}AD^2=\dfrac{25}{16}AD^2.\\ \Rightarrow10^2=\dfrac{25}{16}AD^2.\\ \Rightarrow AD^2=64.\\ \Rightarrow AD=8\left(cm\right).\)
Bạn viết đề sai rồi
Cái \(3\dfrac{14}{17}\) là hỗn số chứ ko phải là số tự nhiên nhân vs phân số
#)Giải :
(Hình bn tự vẽ)
AD là phân giác của ∆ABC \(\Rightarrow\) \(\frac{BD}{AB}=\frac{DC}{AC}\Rightarrow\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}\)
Ta có : \(BC=BD+CD=3.\frac{14}{17}+9.\frac{3}{17}=\frac{42}{17}+\frac{27}{17}=\frac{69}{17}\)
Mà ∆ABC vuông tại A nên theo định lí Py - ta - go \(\Rightarrow AB^2+AC^2=BC^2\Rightarrow AB^2+AC^2=\left(\frac{69}{17}\right)^2\)
Theo t/chất dãy tỉ số bằng nhau : \(\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}=\frac{BD^2+DC^2}{AB^2+AC^2}=\frac{\left(\frac{42}{17}\right)^2+\left(\frac{27}{17}\right)^2}{\left(\frac{69}{17}\right)^2}=\) dài dòng vãi ra @@
Chắc đề sai rồi
a) ta có BD là pg => DA/DC=AB/AC=15/10=3/2
=> DA/3=DC/2=DA+DC/3+2=AC/5=15/5=3
=> DA=3.3=9 cm
DC=3.2=6 cm
b) ta có BE là pg ngoài=> EA/EC=AB/BC=15/10=3/2
=> EA/3=EC/2=EA-EC/3-2=AC/1=15/1=15
=> EC=15.2=30cm
a: DM là phan giác
=>BM/MA=BD/DA
=>5/MA=10/6=5/3
=>MA=3cm
b: ΔBDC có DN là phân giác
nên BN/NC=BD/DC
=>BN/NC=BM/MA
=>MN//AC
Theo tính chất tia phân giác ta có: \(\frac{AD}{CD}=\frac{AB}{BC}=\frac{3}{5}\Rightarrow\sin C=\frac{3}{5}=\cos B\).
\(\cos B=\frac{3}{5}\Rightarrow B\approx53^07'48,37"\Rightarrow ABD=26^033'54,18"\).
Ta có: \(AB=BD.\cos ABD=6\sqrt{5}.\cos26^033'54,18"=12\).
AB = 12 => AC = 20 .Aps dụng ĐL Py-ta-go ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)