K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 8 2021

\(y=\dfrac{6\sqrt{2}.x.\dfrac{1}{6\sqrt{2}}+\dfrac{2\sqrt{2}}{3}.\dfrac{3\sqrt{2}}{4}\sqrt{1+9x^2}}{8x^2+1}\)

\(y\le\dfrac{3\sqrt{2}\left(\dfrac{1}{72}+x^2\right)+\dfrac{\sqrt{2}}{3}\left(\dfrac{9}{8}+9x^2+1\right)}{8x^2+1}=\dfrac{\sqrt{2}\left(6x^2+\dfrac{3}{4}\right)}{8x^2+1}\)

\(y\le\dfrac{\dfrac{3\sqrt{2}}{4}\left(8x^2+1\right)}{8x^2+1}=\dfrac{3\sqrt{2}}{4}\)

22 tháng 11 2021

\(a,\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}=\dfrac{x^2+x+1+1}{\sqrt{x^2+x+1}}=\sqrt{x^2+x+1}+\dfrac{1}{\sqrt{x^2+x+1}}\left(1\right)\)

Áp dụng BĐT cosi: \(\left(1\right)\ge2\sqrt{\sqrt{x^2+x+1}\cdot\dfrac{1}{\sqrt{x^2+x+1}}}=2\)

Dấu \("="\Leftrightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lời giải:
TXĐ: $[-1;1]$

$y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{1-x}}+\frac{x}{2}$

$y'=0\Leftrightarrow x=0$

$f(0)=2$;

$f(1)=f(-1)=\sqrt{2}+\frac{1}{4}$
Vậy $f_{\min}=2; f_{\max}=\frac{1}{4}+\sqrt{2}$

NV
16 tháng 7 2021

24.

\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)

\(y_{max}=4\)

26.

\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)

Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)

\(y_{max}=\sqrt{2}\)

b.

\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
22 tháng 8 2021

Lời giải:

\(y'=\frac{5-x}{\sqrt{(x^2+5)^3}}=0\Leftrightarrow x=5\)

Lập bảng biến thiên với các chốt $x=-\infty, x=5; x=+\infty$ ta thấy hàm số có GTLN tại $x=5$

Đáp án D.

 

 


 

Chọn D

NV
21 tháng 3 2021

Do \(\left\{{}\begin{matrix}x\ge-1\Rightarrow x+1\ge0\\\sqrt{x^2+1}>0\end{matrix}\right.\) \(\Rightarrow y\ge0\)

\(y_{min}=0\) khi \(x=-1\)

Lại có: \(y^2=\dfrac{\left(x+1\right)^2}{x^2+1}=\dfrac{x^2+2x+1}{x^2+1}=\dfrac{2\left(x^2+1\right)-x^2+2x-1}{x^2+1}=2-\dfrac{\left(x-1\right)^2}{x^2+1}\le2\)

\(\Rightarrow y\le\sqrt{2}\)

\(y_{max}=\sqrt{2}\) khi \(x=1\)

NV
22 tháng 7 2021

Xét trên các miền xác định của các hàm (bạn tự tìm miền xác định)

a.

\(y'=\dfrac{1}{2\sqrt{x-3}}-\dfrac{1}{2\sqrt{6-x}}=\dfrac{\sqrt{6-x}-\sqrt{x-3}}{2\sqrt{\left(x-3\right)\left(6-x\right)}}\)

\(y'=0\Rightarrow6-x=x-3\Rightarrow x=\dfrac{9}{2}\)

\(x=\dfrac{9}{2}\) là điểm cực đại của hàm số

b.

\(y'=1-\dfrac{9}{\left(x-2\right)^2}=0\Rightarrow\left(x-2\right)^2=9\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

\(x=-1\) là điểm cực đại, \(x=5\) là điểm cực tiểu

c.

\(y'=\sqrt{3-x}-\dfrac{x}{2\sqrt{3-x}}=0\Rightarrow2\left(3-x\right)-x=0\)

\(\Rightarrow x=2\) 

\(x=2\) là điểm cực đại

NV
22 tháng 7 2021

d.

\(y'=\dfrac{-x^2+4}{\left(x^2+4\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

\(x=-2\) là điểm cực tiểu, \(x=2\) là điểm cực đại

e.

\(y'=\dfrac{-8\left(x^2-5x+4\right)}{\left(x^2-4\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

\(x=1\) là điểm cực tiểu, \(x=4\) là điểm cực đại

NV
26 tháng 3 2021

\(f'\left(x\right)=x^2-4\sqrt{2}x+8=\left(x-2\sqrt{2}\right)^2\)

\(f'\left(x\right)=0\Rightarrow\left(x-2\sqrt{2}\right)^2=0\Rightarrow x=2\sqrt{2}\)