Cho tam giac ABC vuông tại A, đường cao AH . Biết
AB=6cm, C=30 độ.
a) Giải tam giac ABC (độ dài làm tròn 1 chữ số thập phân).
b)Gọi E , F lần lượt là hình chiếu của H lên AB và AC . Chứng minh: HB.HC = AH.EF.
c)Chứng minh: tan2 B-sin2 B=tan2 B.sin2 B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(1\right)\)
Xét ΔABH vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(2\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(3\right)\)
Từ (1), (2) và (3) suy ra \(HB\cdot HC=AD\cdot AB=AE\cdot AC\)
Bài 1:
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100\)
=>BC=10(cm)
Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
=>\(\widehat{B}=90^0-37^0=53^0\)
b: Xét ΔHAB vuông tại H có HG là đường cao
nên \(AG\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HK là đường cao
nên \(AK\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AG\cdot AB=AK\cdot AC\)
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=4,8cm
Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}=\dfrac{3}{5}\)
=>\(\widehat{ACB}\simeq36^052'\)
b: ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
=>\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Do đó: ΔAEF đồng dạng với ΔACB
=>\(\widehat{AFE}=\widehat{ABC}\)
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
b: BC=10cm
AH=4,8cm
BH=3,6cm
CH=6,4cm
1: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2+9=36\)
=>\(AC^2=27\)
=>\(AC=3\sqrt{3}\left(cm\right)\)
Chu vi tam giác ABC là:
\(3+3\sqrt{3}+6=9+3\sqrt{3}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot6=3\cdot3\sqrt{3}=9\sqrt{3}\)
=>\(AH=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)
2:
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>EF=AH
b: Xét ΔHAB vuông tại H có HE là đường cao
nên \(EA\cdot EB=HE^2\)
ΔHAC vuông tại H có HF là đường cao
nên \(FA\cdot FC=HF^2\)
\(EA\cdot EB+FA\cdot FC\)
\(=HE^2+HF^2=EF^2\)
Bạn tự vẽ hình.
(a) \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
+) \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\Rightarrow\hat{B}\approx53^o\)
+) \(\hat{C}=90^o-\hat{B}\approx90^o-53^o=37^o\)
(b) +) \(AB.AC=BC.AH\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)
\(\hat{A}=\hat{E}=\hat{F}=90^o\left(gt\right)\Rightarrow AEHF\) là hình chữ nhật.
Do đó, \(EF=AH\left(đpcm\right)\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{3600}{36}=100\left(cm\right)\\AH=\sqrt{36\left(100-36\right)}=\sqrt{36\cdot64}=6\cdot8=48\left(cm\right)\end{matrix}\right.\)
\(AC=\sqrt{BC^2-AB^2}=80\left(cm\right)\left(pytago\right)\)
\(b,\) Áp dụng HTL trong tam giác ABC,AHB và AHC, ta có
\(\left\{{}\begin{matrix}AB\cdot AC=AH\cdot BC\\BH^2=AB\cdot BE\\CH^2=AC\cdot CF\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB\cdot AC}{AH}\\BE=\dfrac{BH^2}{AB}\\CF=\dfrac{CH^2}{AC}\end{matrix}\right.\)
\(\Rightarrow BE\cdot CF=\dfrac{\left(BH\cdot CH\right)^2}{AB\cdot AC}=\dfrac{AH^4}{AB\cdot AC}\left(AH^2=BH\cdot HC\right)\\ \Rightarrow BE\cdot CF\cdot BC=\dfrac{AB\cdot AC}{AH}\cdot\dfrac{AH^4}{AB\cdot AC}=AH^3\left(Đpcm\right)\)
a: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(BC=AB:\sin\widehat{C}\)
\(=6:\dfrac{1}{2}=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
hay \(AC=6\sqrt{3}\left(cm\right)\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(HB\cdot HC=AH^2\left(1\right)\)
Xét tứ giác AEHF có
\(\widehat{EAF}=\widehat{AFH}=\widehat{AEH}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=EF
hay \(AH\cdot EF=AH^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(HB\cdot HC=AH\cdot EF\)