K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

ĐKXĐ:x\(\ge\)0

Ta có:\(\sqrt{x}\ge0\forall x\in R\)

=>-5\(\sqrt{x}\le0\forall x\in R\)

=>2-5\(\sqrt{x}\le2\forall x\in R\)

\(\sqrt{x}\ge0\forall x\in R\)

=>\(\sqrt{x}+3\ge3\forall x\in R\)

=>A\(=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\le\dfrac{2}{3}\)

=>GTLN của A bằng \(\dfrac{2}{3}\) xảy ra khi và chỉ khi \(\sqrt{x}=0\)<=>x=0

Vậy...

4 tháng 5 2017

cảm ơn bạn nhiều

5 tháng 3 2022

em tham khảo

undefined

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\)

\(=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{2}{x+\sqrt{x}+1}\)

c: Ta có: \(x+\sqrt{x}+1>0\forall x\) thỏa mãn ĐKXĐ

\(\Leftrightarrow\dfrac{2}{x+\sqrt{x}+1}>0\forall x\)

1:

\(A=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)

3: A nguyên

=>-5căn x-15+17 chia hết cho căn x+3

=>căn x+3 thuộc Ư(17)

=>căn x+3=17

=>x=196

4 tháng 8 2023
31 tháng 10 2021

\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

3 tháng 7 2021

\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)

Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)

Dấu "=" xảy ra khi x=0 (tm)

Vậy \(A_{max}=\dfrac{1}{2}\)

Bài 2:

Đk: \(x\ge3;y\ge5;z\ge4\)

Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)

Áp dụng AM-GM có:

\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)

\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)

\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)

Cộng vế với vế \(\Rightarrow VT\ge20\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)

Vậy...

3 tháng 7 2021

I miss you Được em, hoặc trực tiếp nhóm thành HĐT, một vế là tổng các bình phương, vế còn lại bằng 0

28 tháng 10 2021

\(a,Q=\dfrac{x-6\sqrt{x}+9+x+6\sqrt{x}+9+14}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{x}\left(x>0;x\ne9\right)\\ Q=\dfrac{2x+32}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{x}=\dfrac{2x+32}{x\left(\sqrt{x}+3\right)}\)

 

sua  voi ghi lon de mau la 2 chu ko phai x

 

7 tháng 8 2023

\(\dfrac{1}{M}=\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\)

\(B=\dfrac{\sqrt{x}+2}{\sqrt{x}+5}-\dfrac{\sqrt{x}}{27}=\dfrac{27\sqrt{x}+54-x-5\sqrt{x}}{27\left(\sqrt{x}+5\right)}\)\(=\dfrac{-x+22\sqrt{x}+54}{27\left(\sqrt{x}+5\right)}\)

\(\Rightarrow\sqrt{x}.27B+135B=-x+22\sqrt{x}+54\)

\(\Leftrightarrow x+\sqrt{x}\left(27B-22\right)+135B-54=0\) (1)

Coi PT (1) là phương trình bậc 2 ẩn \(\sqrt{x}\)

PT (1) có nghiệm không âm \(\Leftrightarrow\left\{{}\begin{matrix}\Delta=729B^2-1728B+700\ge0\\S=22-27B\ge0\\P=135B-54\ge0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{2}{5}\le B\le\dfrac{14}{27}\)

Suy ra \(max_B=\dfrac{14}{27}\Leftrightarrow x=16\)

A làm tương tự 

7 tháng 8 2023

Không làm được alo nha, giờ hành chính đến 0h30 

11 tháng 10 2021

a: Ta có: \(A=\left(1-\dfrac{2\sqrt{x}-2}{x-1}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{x\sqrt{x}+1}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{x-1}:\dfrac{x-\sqrt{x}+1-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}\)

1 tháng 7 2021

Ta có: \(x=9-4\sqrt{5}\)

⇔ \(\sqrt{x}=\sqrt{9-4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}\)

⇔ \(\sqrt{x}=\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}-2\right|\)

⇔ \(\sqrt{x}=\sqrt{5}-2\)   

Khi đó:    \(P=\dfrac{1-\sqrt{5}+2}{\sqrt{5}-2+2}=\dfrac{3-\sqrt{5}}{\sqrt{5}}\)