cho tam giac ABC co AB=6cm,AC=8cm,BC=10cm.a,chung minh tam giac ABC vuong b,ke trung tuyen Am.goi G la trong tam cua tam giac ABC. tinh AG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O la giao diem cua AM va EF nha lam on jup minh lam cau 3voi
bn tự vẽ hình nhé
1.
xét tứ giác AEMF có: AE//MF,EM//AF
=>AEMF là hình bình hành
mà Â=900
=>AEMF là hình chữ nhật
2.a) xét /\ AMF và /\ CMF có
AM=MC( AM là đg trung tuyến)
AM là cạch chung
góc AFM=CFM=900
=>...(ch-gn)
=>AF=FC
(làm tương tự vói /\ BME và AME)
=>BE=EA
xét tam giác ABC có EF là đg trung bình
=>EF//BC
mà H thuộc BC và O thuộc EF nên OF//HC
xét tứ giác OHCF có OF//HC(CMT)
=>OHCF là hình thang
(giờ mk buồn ngủ quá nên hẹn mai giải tiếp nhé,hoặc bn có thể vào vietjack.com)
Xét \(\Delta HAB\)và \(\Delta HCA\)có:
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\widehat{HAB}=\widehat{HCA}\)(cùng phụ với \(\widehat{HAC}\))
Suy ra \(\Delta HAB\)đồng dạng với \(\Delta HCA\)(g.g)
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
Giải:
a, Ta có: \(AB^2+AC^2=6^2+8^2=100\)
\(BC^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( đpcm )
b, \(\Delta ABC\) vuông tại A có AM là trung tuyến
\(\Rightarrow AM=\dfrac{1}{2}BC\Rightarrow AM=5\)
Mà \(AG=\dfrac{2}{3}.AM\Rightarrow AG=\dfrac{10}{3}\left(cm\right)\)
Vậy...
cam on ban