K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Hình bình hành

14 tháng 4 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: AB = CD (tính chất hình bình hành)

EB = 1/2 AB (gt)

FD = 1/2 CD (gt)

Suy ra: EB = FD (1)

Mà AB // CD (gt)

⇒ BE // FD (2)

Từ (1) và (2) suy ra tứ giác BEDF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ DE = BF (tính chất hình bình hành)

12 tháng 7 2018

Giải:                                                                      

Ta có: AB = CD ( tính chất hình bình hành)

 \(EB=\frac{1}{2}AB\left(gt\right)\)

\(FD=\frac{1}{2}CD\left(gt\right)\)

Suy ra: EB = FB  (1)

Mà AB // CD (gt)

⇒ BE // FD   (2)

Từ (1) và (2) suy ra tứ giác BEDF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ DE = BF (tính chất hình bình hành)

12 tháng 7 2018

A B C D E F

Ta có: AB = CD (tính chất hình bình hành)

EB = 1/2 AB (gt)

FD = 1/2 CD (gt)

Suy ra: EB = FD (1)

Mà AB // CD (gt)

⇒ BE // FD (2)

Từ (1) và (2) suy ra tứ giác BEDF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ DE = BF (tính chất hình bình hành)

9 tháng 10 2021

Ta có \(EB=\dfrac{1}{2}AB\left(E.là.trung.điểm.AB\right)\)

\(FD=\dfrac{1}{2}CD\left(F.là.trung.điểm.CD\right)\)

\(AB=CD\left(hbh.ABCD\right)\Rightarrow\dfrac{1}{2}AB=\dfrac{1}{2}CD\)

\(\Rightarrow BE=DF;BE//DF\left(AB//CD\right)\)

Do đó BEDF là hbg

\(\Rightarrow DE=BF\)

a: BE=AB/2

DF=DC/2

mà AB=DC

nên BE=DF

Xét tứ giác BEDF có

BE//DF

BE=DF

=>BEDF là hình bình hành

=>DE=BF

b: BEDF là hbh

=>BD cắt EF tại trung điểm của mỗi đường(1)

ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AC,BD,EF đồng quy

 

25 tháng 11 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

+) Ta có:

AE = 1/2 AB; CF = 1/2. CD ( vì E và F lần lượt là trung điểm của AB, CD).

Và AB = CD (tính chất hình bình hành)

Suy ra: AE = CF

+) Lại có: AB // CD ( vì ABCD là hình bình hành) nên AE //CF

Tứ giác AECF có hai cạnh đối AE, CF song song và bằng nhau nên là hình bình hành

⇒ AF //CE hay EN // FM (1)

Xét tứ giác BFDE ta có:

AB // CD (gt) hay BE // DF

BE = 1/2 AB (gt)

DF = 1/2 CD (gt)

AB = CD (tính chất hình bình hành)

Suy ra: BE = DF

Tứ giác BFDE là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau) ⇒ BF//DE hay EM // FN (2)

Từ (1) và (2) suy ra tứ giác EMFN là hình bình hành (theo định nghĩa hình bình hành)

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

22 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ∆ EOM và  ∆ FON có: ∠ (MEO) =  ∠ (NFO) (so le trong do DE//BF)

OE = OF (tính chất hình bình hành)

∠ (MOE)=  ∠ (NOF) (đối đỉnh )

Suy ra:  ∆ EOM =  ∆ FON (g.c.g) ⇒ OM = ON

Vậy tứ giác EMFN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường).

15 tháng 11 2021

5. Vì tứ giác ABCD là hình bình hành (gt)

=> AD // BC ; AD = BC (tc)

Vì M là trung điểm AD (gt)

     N là trung điểm BC (gt)

     AD = BC (cmt)

=> AM = DM = BN = CN

Vì AD // BC mà M ∈ AD, N ∈ BC

=> MD // BN 

Xét tứ giác MBND có : MD = BN (cmt)

                                     MD // BN (cmt)

=> Tứ giác MBND là hình bình hành (DHNB)

=> BM = DN (tc hình bình hành)

     

15 tháng 11 2021

6. Vì tứ giác ABCD là hình bình hành (gt)

=> AB // CD ; AB = CD (tc)

Vì E là trung điểm AB (gt)

     F là trung điểm CD (gt)

     AB = CD (cmt)

=> AE = BE = DF = DF 

Vì AB // CD mà E ∈ AB, F ∈ CD

=> BE // DF 

Xét tứ giác DEBF có : BE = DF (cmt)

                                     BE // DF (cmt)

=> Tứ giác DEBF là hình bình hành (DHNB)